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Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Recall: Monte Carlo Integration

2

I =

Z

D
f(x) dx

⇡
Z

D
f(x)S(x) dx



Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Recall: Monte Carlo Integration

2

I =

Z

D
f(x) dx

⇡
Z

D
f(x)S(x) dx



Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Recall: Monte Carlo Integration

2

I =

Z

D
f(x) dx

⇡
Z

D
f(x)S(x) dx



Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Recall: Monte Carlo Integration

2

I =

Z

D
f(x) dx

⇡
Z

D
f(x)S(x) dx

I =

Z

D
f(x) dx

⇡
Z

D
f(x)S(x) dx



Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Recall: Monte Carlo Integration

2

S(x) =
1

N

NX

k=1

�(x� xk)

xk

I =

Z

D
f(x) dx

⇡
Z

D
f(x)S(x) dx

I =

Z

D
f(x) dx

⇡
Z

D
f(x)S(x) dx



Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Recall: Monte Carlo Integration

2

S(x) =
1

N

NX

k=1

�(x� xk)

xk

I =

Z

D
f(x) dx

⇡
Z

D
f(x)S(x) dx

I =

Z

D
f(x) dx

⇡
Z

D
f(x)S(x) dx



Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Recall: Monte Carlo Integration
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Independent Random Sampling
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for (int k = 0; k < num; k++) 
{ 

samples(k).x = randf(); 
samples(k).y = randf(); 

}
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Independent Random Sampling

3

✔Trivially extends to higher dimensions

✔Trivially progressive and memory-less

✘ Big gaps

✘ Clumping

for (int k = 0; k < num; k++) 
{ 

samples(k).x = randf(); 
samples(k).y = randf(); 

}
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Regular Sampling
for (uint i = 0; i < numX; i++) 

for (uint j = 0; j < numY; j++) 
{ 

samples(i,j).x = (i + 0.5)/numX; 
samples(i,j).y = (j + 0.5)/numY; 

}

8

✔Extends to higher dimensions, but…
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Regular Sampling
for (uint i = 0; i < numX; i++) 

for (uint j = 0; j < numY; j++) 
{ 

samples(i,j).x = (i + 0.5)/numX; 
samples(i,j).y = (j + 0.5)/numY; 

}

8

✔Extends to higher dimensions, but…

✘ Curse of dimensionality

✘ Aliasing



Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Regular Sampling
for (uint i = 0; i < numX; i++) 

for (uint j = 0; j < numY; j++) 
{ 

samples(i,j).x = (i + 0.5)/numX; 
samples(i,j).y = (j + 0.5)/numY; 

}
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Jittered/Stratified Sampling
for (uint i = 0; i < numX; i++) 

for (uint j = 0; j < numY; j++) 
{ 

samples(i,j).x = (i + randf())/numX; 
samples(i,j).y = (j + randf())/numY; 

}
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Jittered/Stratified Sampling
for (uint i = 0; i < numX; i++) 

for (uint j = 0; j < numY; j++) 
{ 

samples(i,j).x = (i + randf())/numX; 
samples(i,j).y = (j + randf())/numY; 

}

10

✔Provably cannot increase variance

✔Extends to higher dimensions, but…

✘ Curse of dimensionality

✘ Not progressive
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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Jittered Sampling
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Independent Random Sampling
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sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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Monte Carlo (16 random samples)
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Monte Carlo (16 jittered samples)
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Stratifying in Higher Dimensions
Stratification requires O(Nd) samples
- e.g. pixel (2D) + lens (2D) + time (1D) = 5D
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Stratifying in Higher Dimensions
Stratification requires O(Nd) samples
- e.g. pixel (2D) + lens (2D) + time (1D) = 5D

• splitting 2 times in 5D = 25 = 32 samples

• splitting 3 times in 5D = 35 = 243 samples!

Inconvenient for large d
- cannot select sample count with fine granularity
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Uncorrelated Jitter [Cook et al. 84]
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Compute stratified samples in sub-dimensions

Uncorrelated Jitter [Cook et al. 84]
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Compute stratified samples in sub-dimensions
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Compute stratified samples in sub-dimensions
- 2D jittered (x,y) for pixel
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- 1D jittered (t) for time
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Compute stratified samples in sub-dimensions
- 2D jittered (x,y) for pixel

- 2D jittered (u,v) for lens

- 1D jittered (t) for time

- combine dimensions 
in random order

Uncorrelated Jitter [Cook et al. 84]

16Fourier Analysis of Numerical Integration in Monte Carlo Rendering Image source: PBRTe2 [Pharr & Humphreys 2010]
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Depth of Field (4D)

17

Reference Random Sampling Uncorrelated Jitter

Image source: PBRTe2 [Pharr & Humphreys 2010]
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Latin Hypercube (N-Rooks) Sampling

21Image source: Michael Maggs, CC BY-SA 2.5

[Shirley 91]

https://commons.wikimedia.org/w/index.php?curid=3318748
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// initialize the diagonal 
for (uint d = 0; d < numDimensions; d++) 

for (uint i = 0; i < numS; i++) 
samples(d,i) = (i + randf())/numS; 

// shuffle each dimension independently 
for (uint d = 0; d < numDimensions; d++) 

shuffle(samples(d,:));

Latin Hypercube (N-Rooks) Sampling

22
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Latin Hypercube (N-Rooks) Sampling
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Shuffle rows

// initialize the diagonal 
for (uint d = 0; d < numDimensions; d++) 

for (uint i = 0; i < numS; i++) 
samples(d,i) = (i + randf())/numS; 

// shuffle each dimension independently 
for (uint d = 0; d < numDimensions; d++) 

shuffle(samples(d,:));
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Latin Hypercube (N-Rooks) Sampling
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Latin Hypercube (N-Rooks) Sampling
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Shuffle columns

// initialize the diagonal 
for (uint d = 0; d < numDimensions; d++) 

for (uint i = 0; i < numS; i++) 
samples(d,i) = (i + randf())/numS; 

// shuffle each dimension independently 
for (uint d = 0; d < numDimensions; d++) 

shuffle(samples(d,:));
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Latin Hypercube (N-Rooks) Sampling
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Latin Hypercube (N-Rooks) Sampling
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// initialize the diagonal 
for (uint d = 0; d < numDimensions; d++) 

for (uint i = 0; i < numS; i++) 
samples(d,i) = (i + randf())/numS; 

// shuffle each dimension independently 
for (uint d = 0; d < numDimensions; d++) 

shuffle(samples(d,:));
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Latin Hypercube (N-Rooks) Sampling
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Latin Hypercube (N-Rooks) Sampling
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Evenly distributed in each 
individual dimension

Unevenly distributed 
in n-dimensions
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at

Fourier Analysis of Numerical Integration in Monte Carlo Rendering

N-Rooks Sampling

30

Samples Expected power spectrum Radial mean



Multi-Jittered Sampling
Kenneth Chiu, Peter Shirley, and Changyaw Wang. 
“Multi-jittered sampling.” In Graphics Gems IV, pp. 
370–374. Academic Press, May 1994. 

– combine N-Rooks and Jittered stratification constraints

31Fourier Analysis of Numerical Integration in Monte Carlo Rendering
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Multi-Jittered Sampling

32
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Multi-Jittered Sampling
// initialize 
float cellSize = 1.0 / (resX*resY); 
for (uint i = 0; i < resX; i++) 

for (uint j = 0; j < resY; j++) 
{ 

samples(i,j).x = i/resX + (j+randf()) / (resX*resY); 
samples(i,j).y = j/resY + (i+randf()) / (resX*resY); 

} 

// shuffle x coordinates within each column of cells 
for (uint i = 0; i < resX; i++) 

for (uint j = resY-1; j >= 1; j--) 
swap(samples(i, j).x, samples(i, randi(0, j)).x); 

// shuffle y coordinates within each row of cells 
for (unsigned j = 0; j < resY; j++) 

for (unsigned i = resX-1; i >= 1; i--) 
swap(samples(i, j).y, samples(randi(0, i), j).y);

33
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Multi-Jittered Sampling

34

Initialize
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Multi-Jittered Sampling
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Shuffle x-coords



Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Multi-Jittered Sampling
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Shuffle x-coords
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Multi-Jittered Sampling
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Shuffle x-coords
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Multi-Jittered Sampling

37

Shuffle x-coords
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Multi-Jittered Sampling
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Shuffle x-coords
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Multi-Jittered Sampling
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Multi-Jittered Sampling
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Shuffle y-coords
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Multi-Jittered Sampling
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Shuffle y-coords
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Multi-Jittered Sampling
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Shuffle y-coords
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Multi-Jittered Sampling
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Shuffle y-coords
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Multi-Jittered Sampling
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Shuffle y-coords
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Multi-Jittered Sampling (Projections)
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Multi-Jittered Sampling (Projections)
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Multi-Jittered Sampling (Projections)
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Multi-Jittered Sampling (Projections)
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Multi-Jittered Sampling (Projections)
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Multi-Jittered Sampling (Projections)
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Evenly distributed in each 
individual dimension

Evenly distributed in 2D!
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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Multi-Jittered Sampling
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
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sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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N-Rooks Sampling

48

Samples Radial meanExpected power spectrum



24 Chapter 5. Popular sampling patterns

Samples Power spectrum Radial mean

R
an

do
m

0 1 2 3 4

Frequency

0

1

2

P
o
w
e
r

Ji
tte

r

0 1 2 3 4

Frequency

0

1

2

P
o
w
e
r

M
ul

ti-
jit

te
r

0 1 2 3 4

Frequency

0

1

2

P
o
w
e
r

N
-r

oo
ks

0 1 2 3 4

Frequency

0

1

2

P
o
w
e
r

Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at
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Poisson-Disk/Blue-Noise Sampling
Enforce a minimum distance between points 
Poisson-Disk Sampling: 
- Mark A. Z. Dippé and Erling Henry Wold. “Antialiasing through 

stochastic sampling.” ACM SIGGRAPH, 1985. 

- Robert L. Cook. “Stochastic sampling in computer graphics.” 
ACM Transactions on Graphics, 1986. 

- Ares Lagae and Philip Dutré. “A comparison of methods for 
generating Poisson disk distributions.” Computer Graphics 
Forum, 2008.
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Figure 5.9: Illustration of some well known blue noise samplers with the corresponding Fourier
expected power spectra and the corresponding radial mean of their expected power spectra.

5.3.3 Tiling-based methods
There are some tile-based approaches that can be used to generate blue noise samples Tile-based
methods overcome the computational complexity of dart-throwing and/or relaxation based ap-
proaches in generating blue noise sampling patterns. In computer graphics community, two
tile-based approaches are well known: First approach uses a set of precomputed tiles [10, 25], with
each tile composed of multiple samples, and later use these tiles, in a sophisticated way, to pave the
sampling domain. Second approach employed tiles with one sample per tile [34, 33, 49] and uses
some relaxation-based schemes, with look-up tables, to improve the over all quality of samples.
Although many blue noise sample generation algorithms exist, none of them are easily extendable
to higher dimensions (> 3).

5.4 Interpreting and exploiting knowledge of the sampling spectra

Recently [39], it has been shown that the low frequency region of the radial power spectrum (of a
given sampling pattern) plays a crucial role in deciding the overall variance convergence rates of
sampling patterns used for Monte Carlo integration. Since blue noise sampling patterns contains
almost no radial energy in the low frequency region, they are of great interest for future research
to obtain fast results in rendering problems. Surprisingly, Poisson Disk samples have shown the
convergence rate of O

�
N�1� which is the same as given by purely random samples. This can

be explained by looking at the low frequency region in the radial power spectrum of Poisson
Disk samples (Fig. 5.9) which is not zero. The importance of the shape of the radial mean power
spectrum in the low frequency region demands methods and algorithms that could eventually allow
sample generation directly from a target Fourier spectrum.

5.4.1 Radially-averaged periodograms
Figures 5.6, 5.8 and 5.9 depict radially averaged periodograms of the various sampling strategies
described in this chapter. These spectra reveal two important characteristics of estimators built
using the corresponding sampling strategies.
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Figure 5.9: Illustration of some well known blue noise samplers with the corresponding Fourier
expected power spectra and the corresponding radial mean of their expected power spectra.

5.3.3 Tiling-based methods
There are some tile-based approaches that can be used to generate blue noise samples Tile-based
methods overcome the computational complexity of dart-throwing and/or relaxation based ap-
proaches in generating blue noise sampling patterns. In computer graphics community, two
tile-based approaches are well known: First approach uses a set of precomputed tiles [10, 25], with
each tile composed of multiple samples, and later use these tiles, in a sophisticated way, to pave the
sampling domain. Second approach employed tiles with one sample per tile [34, 33, 49] and uses
some relaxation-based schemes, with look-up tables, to improve the over all quality of samples.
Although many blue noise sample generation algorithms exist, none of them are easily extendable
to higher dimensions (> 3).

5.4 Interpreting and exploiting knowledge of the sampling spectra

Recently [39], it has been shown that the low frequency region of the radial power spectrum (of a
given sampling pattern) plays a crucial role in deciding the overall variance convergence rates of
sampling patterns used for Monte Carlo integration. Since blue noise sampling patterns contains
almost no radial energy in the low frequency region, they are of great interest for future research
to obtain fast results in rendering problems. Surprisingly, Poisson Disk samples have shown the
convergence rate of O

�
N�1� which is the same as given by purely random samples. This can

be explained by looking at the low frequency region in the radial power spectrum of Poisson
Disk samples (Fig. 5.9) which is not zero. The importance of the shape of the radial mean power
spectrum in the low frequency region demands methods and algorithms that could eventually allow
sample generation directly from a target Fourier spectrum.

5.4.1 Radially-averaged periodograms
Figures 5.6, 5.8 and 5.9 depict radially averaged periodograms of the various sampling strategies
described in this chapter. These spectra reveal two important characteristics of estimators built
using the corresponding sampling strategies.
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Figure 5.9: Illustration of some well known blue noise samplers with the corresponding Fourier
expected power spectra and the corresponding radial mean of their expected power spectra.

5.3.3 Tiling-based methods
There are some tile-based approaches that can be used to generate blue noise samples Tile-based
methods overcome the computational complexity of dart-throwing and/or relaxation based ap-
proaches in generating blue noise sampling patterns. In computer graphics community, two
tile-based approaches are well known: First approach uses a set of precomputed tiles [10, 25], with
each tile composed of multiple samples, and later use these tiles, in a sophisticated way, to pave the
sampling domain. Second approach employed tiles with one sample per tile [34, 33, 49] and uses
some relaxation-based schemes, with look-up tables, to improve the over all quality of samples.
Although many blue noise sample generation algorithms exist, none of them are easily extendable
to higher dimensions (> 3).

5.4 Interpreting and exploiting knowledge of the sampling spectra

Recently [39], it has been shown that the low frequency region of the radial power spectrum (of a
given sampling pattern) plays a crucial role in deciding the overall variance convergence rates of
sampling patterns used for Monte Carlo integration. Since blue noise sampling patterns contains
almost no radial energy in the low frequency region, they are of great interest for future research
to obtain fast results in rendering problems. Surprisingly, Poisson Disk samples have shown the
convergence rate of O

�
N�1� which is the same as given by purely random samples. This can

be explained by looking at the low frequency region in the radial power spectrum of Poisson
Disk samples (Fig. 5.9) which is not zero. The importance of the shape of the radial mean power
spectrum in the low frequency region demands methods and algorithms that could eventually allow
sample generation directly from a target Fourier spectrum.

5.4.1 Radially-averaged periodograms
Figures 5.6, 5.8 and 5.9 depict radially averaged periodograms of the various sampling strategies
described in this chapter. These spectra reveal two important characteristics of estimators built
using the corresponding sampling strategies.
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Low-Discrepancy Sampling
Deterministic sets of points specially crafted to be 
evenly distributed (have low discrepancy). 
Entire field of study called Quasi-Monte Carlo (QMC)
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The Van der Corput Sequence
Radical Inverse Φb in base 2 

Subsequent points “fall into 
biggest holes”
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Halton: Radical inverse with different base for each dimension:
~xk = (�2(k),�3(k),�5(k), . . . ,�pn(k))

Halton and Hammersley Points
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Halton: Radical inverse with different base for each dimension:

- The bases should all be relatively prime.
~xk = (�2(k),�3(k),�5(k), . . . ,�pn(k))

Halton and Hammersley Points
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Halton: Radical inverse with different base for each dimension:

- The bases should all be relatively prime.
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Halton: Radical inverse with different base for each dimension:

- The bases should all be relatively prime.

- Incremental/progressive generation of samples

Hammersley: Same as Halton, but first dimension is k/N:

~xk = (�2(k),�3(k),�5(k), . . . ,�pn(k))

~xk = (k/N,�2(k),�3(k),�5(k), . . . ,�pn(k))

Halton and Hammersley Points
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Halton: Radical inverse with different base for each dimension:

- The bases should all be relatively prime.

- Incremental/progressive generation of samples

Hammersley: Same as Halton, but first dimension is k/N:

- Not incremental, need to know sample count, N, in advance

~xk = (�2(k),�3(k),�5(k), . . . ,�pn(k))

~xk = (k/N,�2(k),�3(k),�5(k), . . . ,�pn(k))

Halton and Hammersley Points
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Monte Carlo (16 jittered samples)
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More info on QMC in Rendering
S. Premoze, A. Keller, and M. Raab. 
Advanced (Quasi-) Monte Carlo Methods for Image Synthesis. 
In SIGGRAPH 2012 courses. 
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