Wojciech Jarosz [wjarosz@dartmouth.edu](mailto:wjarosz@dartmouth.edu?subject=)

POPULAR SAMPLING PATTERNS Fourier Analysis of Numerical Integration in Monte Carlo Rendering

DARTMOUTH VISUAL COMPUTING LAB

Render the Possibilities **SIGGRAPH201**

Recall: Monte Carlo Integration

I = z
Zanada
Zanada *D f*(*x*) d*x*

Recall: Monte Carlo Integration

I = z
Zanada
Zanada *D f*(*x*) d*x*

Recall: Monte Carlo Integration

I = z
Zanada
Zanada *D f*(*x*) d*x*

Recall: Monte Carlo Integration

I = z
Zanada
Zanada *D f*(*x*) d*x* \approx *D f*(*x*) S(*x*) d*x I* = Z *D f*(*x*) d*x* \approx z
Zanada
Zanada *D f*(*x*) S(*x*) d*x*

Recall: Monte Carlo Integration

Recall: Monte Carlo Integration

Recall: Monte Carlo Integration

How to generate the locations *x^k* ? *x^k*

$$
I = \int_{D} f(x) dx
$$

$$
\approx \int_{D} f(x) S(x) dx
$$

$$
S(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - \boxed{x_k})
$$

-
-

for (int $k = 0$; $k < num$; $k++$) {

Independent Random Sampling

- samples(k). $x = randf()$;
- samples(k). $y = randf()$;

for (int $k = 0$; $k < num$; $k++$) {

Independent Random Sampling

- samples(k). $x = randf()$;
- samples(k). $y = randf()$;

Independent Random Sampling

for (int $k = 0$; $k < num$; $k++$) {

- samples(k). $x = randf()$;
- samples(k). $y = randf()$;

✔Trivially extends to higher dimensions

Independent Random Sampling

for (int $k = 0$; $k < num$; $k++$) {

samples(k). $x = randf()$; samples(k). $y = randf()$;

✔Trivially extends to higher dimensions ✔Trivially progressive and memory-less

Independent Random Sampling

for (int $k = 0$; $k < num$; $k++$) {

samples(k). $x = randf()$; samples(k). $y = randf()$; }

✔Trivially extends to higher dimensions ✔Trivially progressive and memory-less ✘ Big gaps

Independent Random Sampling

for (int $k = 0$; $k < num$; $k++$) {

✔Trivially extends to higher dimensions

samples(k). $x = randf()$; samples(k). $y = randf()$; }

- ✔Trivially progressive and memory-less
- Big gaps
- ✘ Clumping

Regular Sampling

for (uint $i = 0; i <$ numX; $i+1$ for $(uint j = 0; j < numY; j++)$ { $samples(i,j).x = (i + 0.5)/numX;$ $samples(i,j).y = (j + 0.5)/numY;$ }

✔Extends to higher dimensions, but…

Regular Sampling

for (uint $i = 0; i <$ numX; $i++)$ for $(uint j = 0; j < numY; j++)$ { $samples(i,j).x = (i + 0.5)/numX;$ samples(i,j). $y = (j + 0.5)/num$ }

✔Extends to higher dimensions, but… ✘ Curse of dimensionality

Regular Sampling

for (uint $i = 0; i <$ numX; $i++)$ for $(uint j = 0; j < numY; j++)$ { $samples(i,j).x = (i + 0.5)/numX;$ samples(i,j). $y = (j + 0.5)/num$ }

✔Extends to higher dimensions, but… ✘ Curse of dimensionality ✘ Aliasing

Regular Sampling

for (uint $i = 0; i <$ numX; $i+1$ for $(uint j = 0; j < numY; j++)$ { $samples(i,j).x = (i + 0.5)/numX;$ samples(i,j). $y = (j + 0.5)/num$ }

Jittered/Stratified Sampling

for (uint $i = 0; i <$ numX; $i++)$ for (uint $j = 0$; $j < numY$; $j++)$ { samples(i , j). $x = (i + randf()) / numX;$ samples(i , j). $y = (j + randf())/numY;$ }

Jittered/Stratified Sampling

for (uint $i = 0; i <$ numX; $i++)$ for (uint $j = 0$; $j < numY$; $j++)$ {

- samples(i , j). $x = (i + randf()) / numX;$ samples(i , j). $y = (j + randf()) / numY$;
- ✔Provably cannot increase variance

Jittered/Stratified Sampling

for (uint $i = 0; i <$ numX; $i+1$) for (uint $j = 0$; $j < numY$; $j++)$ {

- samples(i , j). $x = (i + randf()) / numX;$ samples(i , j). $y = (j + randf())/numY;$
- ✔Provably cannot increase variance
- ✔Extends to higher dimensions, but…

Jittered/Stratified Sampling

- for (uint $i = 0; i <$ numX; $i++)$ for (uint $j = 0$; $j < numY$; $j++)$ {
	- samples(i , j). $x = (i + randf()) / numX;$ samples(i , j). $y = (j + randf())/numY;$ }
}
	- ✔Provably cannot increase variance
	- ✔Extends to higher dimensions, but…
	- ✘ Curse of dimensionality

Jittered/Stratified Sampling

- for (uint $i = 0; i <$ numX; $i+1$) for (uint $j = 0$; $j < numY$; $j++)$ {
	- samples(i , j). $x = (i + randf()) / numX;$ samples(i , j). $y = (j + randf()) / numY;$ }
	- ✔Provably cannot increase variance
	- ✔Extends to higher dimensions, but…
	- ✘ Curse of dimensionality
	- ✘ Not progressive

Jittered Sampling Samples : Expected power spectrum

Independent Random Sampling 24 Chapter 5. Popular sampling patterns and the sampling patterns are sampling

Monte Carlo (16 random samples)

Monte Carlo (16 jittered samples)

Stratifying in Higher Dimensions

Stratification requires O(*Nd*) samples

- e.g. pixel $(2D)$ + lens $(2D)$ + time $(1D)$ = 5D

 Δ Fourier Analysis of Numerical Integration in Monte Carlo Rendering 15

Stratifying in Higher Dimensions

Stratification requires O(*Nd*) samples

- e.g. pixel $(2D)$ + lens $(2D)$ + time $(1D)$ = 5D
	- splitting 2 times in $5D = 2^5 = 32$ samples
	- splitting 3 times in $5D = 3^5 = 243$ samples!

 \triangle Fourier Analysis of Numerical Integration in Monte Carlo Rendering 15

Stratifying in Higher Dimensions

- Stratification requires O(*Nd*) samples
- $-$ e.g. pixel (2D) + lens (2D) + time (1D) = 5D
	- splitting 2 times in $5D = 2^5 = 32$ samples
	- splitting 3 times in $5D = 3^5 = 243$ samples!
- Inconvenient for large *d*
- cannot select sample count with fine granularity

 \triangle Fourier Analysis of Numerical Integration in Monte Carlo Rendering 15

Uncorrelated Jitter [Cook et al. 84]

YCF Fourier Analysis of Numerical Integration in Monte Carlo Rendering 16

Uncorrelated Jitter [Cook et al. 84]

YCL Fourier Analysis of Numerical Integration in Monte Carlo Rendering 16

- 2D jittered (x,y) for pixel

YCL

Fourier Analysis of Numerical Integration in Monte Carlo Rendering Image source: PBRTe2 [Pharr & Humphreys 2010] 16

- 2D jittered (x,y) for pixel
- 2D jittered (u,v) for lens

YCL Fourier Analysis of Numerical Integration in Monte Carlo Rendering Image source: PBRTe2 [Pharr & Humphreys 2010] 16

- 2D jittered (x,y) for pixel
- 2D jittered (u,v) for lens
- 1D jittered (t) for time

YCL

Fourier Analysis of Numerical Integration in Monte Carlo Rendering Image source: PBRTe2 [Pharr & Humphreys 2010] 16

- 2D jittered (x,y) for pixel
- 2D jittered (u,v) for lens
- 1D jittered (t) for time
- combine dimensions in random order

YCL

Fourier Analysis of Numerical Integration in Monte Carlo Rendering Image source: PBRTe2 [Pharr & Humphreys 2010] 16

Depth of Field (4D)

Fourier Analysis of Numerical Integration in Monte Carlo Rendering AC F Image source: PBRTe2 [Pharr & Humphreys 2010]

Reference Random Sampling Uncorrelated Jitter

Latin Hypercube (N-Rooks) Sampling

Image source: [Michael Maggs, CC BY-SA 2.5](https://commons.wikimedia.org/w/index.php?curid=3318748) 21

[Shirley 91]

// initialize the diagonal for (uint $d = 0$; $d <$ numDimensions; $d++$) for (uint $i = 0$; $i <$ numS; $i+1$) samples(d,i) = $(i + randf())/numS;$

// shuffle each dimension independently for (uint $d = 0$; $d <$ numDimensions; $d++$) shuffle(samples(d,:));

// initialize the diagonal for (uint $d = 0$; $d <$ numDimensions; $d+1$) for (uint $i = 0$; $i <$ numS; $i+1$) $samples(d,i) = (i + randf()) / numS;$

// shuffle each dimension independently for (uint $d = 0$; $d <$ numDimensions; $d++$) shuffle(samples(d,:));

Latin Hypercube (N-Rooks) Sampling

Initialize

// initialize the diagonal for (uint $d = 0$; $d <$ numDimensions; $d++$) for (uint $i = 0$; $i <$ numS; $i+1$) samples(d,i) = $(i + randf())/numS;$

// shuffle each dimension independently for (uint $d = 0$; $d <$ numDimensions; $d+1$) shuffle(samples(d,:));

// initialize the diagonal for (uint $d = 0$; $d <$ numDimensions; $d++$) for (uint $i = 0$; $i <$ numS; $i+1$) samples(d,i) = $(i + randf())/numS;$

Latin Hypercube (N-Rooks) Sampling

Shuffle rows

// shuffle each dimension independently for (uint $d = 0$; d < numDimensions; d++) shuffle(samples(d,:));

// initialize the diagonal for (uint $d = 0$; $d <$ numDimensions; $d++$) for (uint $i = 0$; $i <$ numS; $i+1$) samples(d,i) = $(i + randf())/numS;$

Latin Hypercube (N-Rooks) Sampling

Shuffle rows

// shuffle each dimension independently for (uint $d = 0$; d < numDimensions; d++) shuffle(samples(d,:));

// initialize the diagonal for (uint $d = 0$; $d <$ numDimensions; $d++$) for (uint $i = 0$; $i <$ numS; $i+1$) samples(d,i) = $(i + randf())/numS;$

// shuffle each dimension independently for (uint $d = 0$; d < numDimensions; d++) shuffle(samples(d,:));

Latin Hypercube (N-Rooks) Sampling

Shuffle rows

// initialize the diagonal for (uint $d = 0$; $d <$ numDimensions; $d++$) for (uint $i = 0$; $i <$ numS; $i+1$) samples(d,i) = $(i + randf())/numS;$

// shuffle each dimension independently for (uint $d = 0$; d < numDimensions; d++) shuffle(samples(d,:));

// initialize the diagonal for (uint $d = 0$; $d <$ numDimensions; $d++$) for (uint $i = 0$; $i <$ numS; $i+1$) samples(d,i) = $(i + randf())/numS;$

Latin Hypercube (N-Rooks) Sampling

Shuffle columns

// shuffle each dimension independently for (uint $d = 0$; $d <$ numDimensions; $(d+1)$ shuffle(samples(d,:));

// initialize the diagonal for (uint $d = 0$; $d <$ numDimensions; $d++$) for (uint $i = 0$; $i <$ numS; $i+1$) samples(d,i) = $(i + randf())/numS;$

Latin Hypercube (N-Rooks) Sampling

Shuffle columns

// shuffle each dimension independently for (uint $d = 0$; $d <$ numDimensions; $(d+1)$ shuffle(samples(d,:));

// initialize the diagonal for (uint $d = 0$; $d <$ numDimensions; $d++$) for (uint $i = 0$; $i <$ numS; $i+1$) samples(d,i) = $(i + randf())/numS;$

Latin Hypercube (N-Rooks) Sampling

// shuffle each dimension independently for (uint $d = 0$; $d <$ numDimensions; $d++$) shuffle(samples(d,:));

Multi-Jittered Sampling

Kenneth Chiu, Peter Shirley, and Changyaw Wang. "Multi-jittered sampling." In *Graphics Gems IV*, pp.

 \triangle Fourier Analysis of Numerical Integration in Monte Carlo Rendering 31

370–374. Academic Press, May 1994.

– combine N-Rooks and Jittered stratification constraints

Multi-Jittered Sampling

Multi-Jittered Sampling

// initialize float cellSize = 1.0 / (resX*resY); for (uint $i = 0; i <$ resX; $i++)$ for (uint $j = 0$; $j < \text{resY}$; $j++)$ $\{$ samples(i,j). $x = i/resX + (j+randf())$ / (resX*resY); samples(i,j).y = j/resY + (i+randf()) / (resX*resY); }

shuffle x coordinates within each column of cells for (uint $i = 0; i <$ resX; $i++$) for (uint $j = resY-1; j \ge 1; j--$) swap(samples(i, j).x, samples(i, randi(0, j)).x);

// shuffle y coordinates within each row of cells for (unsigned $j = 0$; $j <$ resY; $j++)$ for (unsigned $i = \text{resX-1}; i \ge 1; i--$) swap(samples(i, j).y, samples(randi(0, i), j).y);

Fourier Analysis of Numerical Integration in Monte Carlo Rendering ∇ ϵ \mathbf{F}

Multi-Jittered Sampling

Initialize

Multi-Jittered Sampling

Multi-Jittered Sampling

Multi-Jittered Sampling

Multi-Jittered Sampling

Multi-Jittered Sampling

Multi-Jittered Sampling

Multi-Jittered Sampling

Multi-Jittered Sampling (Projections)

Multi-Jittered Sampling (Projections)

Multi-Jittered Sampling (Projections)

Multi-Jittered Sampling (Projections)

Multi-Jittered Sampling (Projections)

Multi-Jittered Sampling (Projections)

Multi-Jittered Sampling

Samples Expected power spectrum

Jittered Sampling Samples : Expected power spectrum

Poisson-Disk/Blue-Noise Sampling

Enforce a minimum distance between points Poisson-Disk Sampling:

- Mark A. Z. Dippé and Erling Henry Wold. "Antialiasing through stochastic sampling." *ACM SIGGRAPH,* 1985.
- Robert L. Cook. "Stochastic sampling in computer graphics." *ACM Transactions on Graphics,* 1986.
- Ares Lagae and Philip Dutré. "A comparison of methods for generating Poisson disk distributions." *Computer Graphics Forum*, 2008.

 Δ Fourier Analysis of Numerical Integration in Monte Carlo Rendering 50

\blacksquare Interpreting and exploiting and exploiting spectra \blacksquare **Poisson Disk Sampling**

Ŀ

 $\overline{}$ $\overline{\$ Fourier Analysis of Numerical Integration in Monte Carlo Rendering

\blacksquare Interpreting and exploiting and exploiting spectra \blacksquare **Poisson Disk Sampling**

Ŀ

Low-Discrepancy Sampling

Deterministic sets of points specially crafted to be evenly distributed (have low discrepancy).

 \triangle Fourier Analysis of Numerical Integration in Monte Carlo Rendering 58

-
- Entire field of study called Quasi-Monte Carlo (QMC)

Radical Inverse Φ*b* in base 2

Subsequent points "fall into biggest holes"

 Δ Fourier Analysis of Numerical Integration in Monte Carlo Rendering 59

Radical Inverse Φ*b* in base 2

Subsequent points "fall into biggest holes"

 Δ Fourier Analysis of Numerical Integration in Monte Carlo Rendering 59

Radical Inverse Φ_b in base

Subsequent points "fall int biggest holes"

YCL Fourier Analysis of Numerical Integration in Monte Carlo Rendering 59

Radical Inverse Φ*b* in base 2

Subsequent points "fall into biggest holes"

 Δ Fourier Analysis of Numerical Integration in Monte Carlo Rendering 59

Radical Inverse Φ*b* in base 2

Subsequent points "fall into biggest holes"

 $\frac{1}{2}$ Fourier Analysis of Numerical Integration in Monte Carlo Rendering 59

Radical Inverse Φ*b* in base 2

Subsequent points "fall into biggest holes"

 Δ Fourier Analysis of Numerical Integration in Monte Carlo Rendering 59

Radical Inverse Φ*b* in base 2

Subsequent points "fall into biggest holes"

 \triangle Fourier Analysis of Numerical Integration in Monte Carlo Rendering 59

Radical Inverse Φ*b* in base 2

Subsequent points "fall into biggest holes"

 Δ Fourier Analysis of Numerical Integration in Monte Carlo Rendering 59

Radical Inverse Φ*b* in base 2

Subsequent points "fall into biggest holes"

YCF Fourier Analysis of Numerical Integration in Monte Carlo Rendering 59

Halton and Hammersley Points

 Δ Fourier Analysis of Numerical Integration in Monte Carlo Rendering 60

Halton: Radical inverse with different base for each dimension: $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \ldots, \Phi_{p_n}(k))$

- **Halton**: Radical inverse with different base for each dimension:
	- $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \ldots, \Phi_{p_n}(k))$
- The bases should all be relatively prime.

Halton and Hammersley Points

- **Halton**: Radical inverse with different base for each dimension: $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \ldots, \Phi_{p_n}(k))$
- The bases should all be relatively prime.
- Incremental/progressive generation of samples

Halton and Hammersley Points

Halton and Hammersley Points

- **Halton**: Radical inverse with different base for each dimension: $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \ldots, \Phi_{p_n}(k))$
- The bases should all be relatively prime.
- Incremental/progressive generation of samples
- **Hammersley**: Same as Halton, but first dimension is *k/N*: $\vec{x}_k = (k/N, \Phi_2(k), \Phi_3(k), \Phi_5(k), \ldots, \Phi_{p_n}(k))$
	-

 \triangle Fourier Analysis of Numerical Integration in Monte Carlo Rendering 60

- **Halton**: Radical inverse with different base for each dimension: $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \ldots, \Phi_{p_n}(k))$
- The bases should all be relatively prime.
- Incremental/progressive generation of samples
- **Hammersley**: Same as Halton, but first dimension is *k/N*:
	- $\vec{x}_k = (k/N, \Phi_2(k), \Phi_3(k), \Phi_5(k), \ldots, \Phi_{p_n}(k))$
- Not incremental, need to know sample count, *N*, in advance

Halton and Hammersley Points

The Hammersley Sequence

The Hammersley Sequence

1 sample in each "elementary interval"

Fourier Analysis of Numerical Integration in Monte Carlo Rendering YCF

The Hammersley Sequence

1 sample in each "elementary interval"

Fourier Analysis of Numerical Integration in Monte Carlo Rendering YCF

The Hammersley Sequence

The Hammersley Sequence

Fourier Analysis of Numerical Integration in Monte Carlo Rendering YCF

The Hammersley Sequence

Monte Carlo (16 random samples)

Monte Carlo (16 jittered samples)

Scrambled Low-Discrepancy Sampling

More info on QMC in Rendering

S. Premoze, A. Keller, and M. Raab. In SIGGRAPH 2012 courses.

-
- *Advanced (Quasi-) Monte Carlo Methods for Image Synthesis.*

