POPULAR SAMPLING PATTERNS Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Wojciech Jarosz wjarosz@dartmouth.edu

DARTMOUTH **VISUAL COMPUTING LAB**

Render the Possibilities SIGGRAPH201

 $I = \int_D f(x) \, \mathrm{d}x$

 $I = \int_D f(x) \, \mathrm{d}x$

 $I = \int_D f(x) \, \mathrm{d}x$

 $I = \int_D^{\cdot} f(x) \, \mathrm{d}x$ $\approx \int f(x) \mathbf{S}(x) \, \mathrm{d}x$

$$I = \int_{D} f(x) \, \mathrm{d}x$$
$$\approx \int_{D} f(x) \, \mathbf{S}(x) \, \mathrm{d}x$$
$$\mathbf{S}(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - \mathbf{x}_{k})$$

How to generate the locations x_k ?

for (int k = 0; k < num; k++)

- samples(k).x = randf();
- samples(k).y = randf();

for (int k = 0; k < num; k++)</pre>

- samples(k).x = randf();
- samples(k).y = randf();

for (int k = 0; k < num; k++)
{</pre>

- samples(k).x = randf();
- samples(k).y = randf();

Trivially extends to higher dimensions

for (int k = 0; k < num; k++)
{</pre>

samples(k).x = randf(); samples(k).y = randf();

Trivially extends to higher dimensions
 Trivially progressive and memory-less

for (int k = 0; k < num; k++)

samples(k).x = randf(); samples(k).y = randf();

Trivially extends to higher dimensions Trivially progressive and memory-less **X** Big gaps

for (int k = 0; k < num; k++)
{</pre>

samples(k).x = randf(); samples(k).y = randf();

Trivially extends to higher dimensions

- Trivially progressive and memory-less
- **X** Big gaps
- **X** Clumping

for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++) samples(i,j).x = (i + 0.5)/numX;samples(i,j).y = (j + 0.5)/numY;

Extends to higher dimensions, but...

for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++) samples(i,j).x = (i + 0.5)/numX;samples(i,j).y = (j + 0.5)/numY;

Extends to higher dimensions, but... **X** Curse of dimensionality

for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++) samples(i,j).x = (i + 0.5)/numX;samples(i,j).y = (j + 0.5)/numY;

Extends to higher dimensions, but... **X** Curse of dimensionality **X** Aliasing

for (uint i = 0; i < numX; i++)</pre> for (uint j = 0; j < numY; j++)</pre> samples(i,j).x = (i + 0.5)/numX;samples(i,j).y = (j + 0.5)/numY;

for (uint i = 0; i < numX; i++)</pre> for (uint j = 0; j < numY; j++) samples(i,j).x = (i + randf())/numX; samples(i,j).y = (j + randf())/numY;

for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++)

}

- samples(i,j).x = (i + randf())/numX; samples(i,j).y = (j + randf())/numY;
- Provably cannot increase variance

- for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++)
 - samples(i,j).x = (i + randf())/numX; samples(i,j).y = (j + randf())/numY; }
 - Provably cannot increase variance
 - Extends to higher dimensions, but...

- for (uint i = 0; i < numX; i++)</pre> for (uint j = 0; j < numY; j++)
 - samples(i,j).x = (i + randf())/numX; samples(i,j).y = (j + randf())/numY; }
 - Provably cannot increase variance
 - Extends to higher dimensions, but...
 - **X** Curse of dimensionality

- for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++)
 - samples(i,j).x = (i + randf())/numX; samples(i,j).y = (j + randf())/numY;
 - Provably cannot increase variance
 - Extends to higher dimensions, but...
 - **X** Curse of dimensionality
 - X Not progressive

Jittered Sampling Samples Expected power spectrum

Monte Carlo (16 random samples)

Monte Carlo (16 jittered samples)

Stratifying in Higher Dimensions

Stratification requires O(N^d) samples

- e.g. pixel (2D) + lens (2D) + time (1D) = 5D

Stratifying in Higher Dimensions

- Stratification requires O(N^d) samples
- e.g. pixel(2D) + lens(2D) + time(1D) = 5D
 - splitting 2 times in $5D = 2^5 = 32$ samples
 - splitting 3 times in $5D = 3^5 = 243$ samples!

Stratifying in Higher Dimensions

- Stratification requires O(N^d) samples
- e.g. pixel(2D) + lens(2D) + time(1D) = 5D
 - splitting 2 times in $5D = 2^5 = 32$ samples
 - splitting 3 times in $5D = 3^5 = 243$ samples!
- Inconvenient for large d
- cannot select sample count with fine granularity

Compute stratified samples in sub-dimensions

Compute stratified samples in sub-dimensions

- 2D jittered (x,y) for pixel

Fourier Analysis of Numerical Integration in Monte Carlo Rendering Image source: PBRTe2 [Pharr & Humphreys 2010]

; ₁ ,y ₁	<i>x</i> ₂ , <i>y</i> ₂
; ₃ ,y ₃	<i>x</i> ₄ , <i>y</i> ₄

Compute stratified samples in sub-dimensions

- 2D jittered (x,y) for pixel
- 2D jittered (u,v) for lens

Fourier Analysis of Numerical Integration in Monte Carlo Rendering Image source: PBRTe2 [Pharr & Humphreys 2010]

<i>x</i> ₁ , <i>y</i> ₁	<i>x</i> ₂ , <i>y</i> ₂	
x ₃ ,y ₃	<i>x</i> ₄ , <i>y</i> ₄	

<i>u</i> ₁ , <i>v</i> ₁	u
<i>u</i> ₃ , <i>v</i> ₃	ц

Compute stratified samples in sub-dimensions

- 2D jittered (x,y) for pixel
- 2D jittered (u,v) for lens
- 1D jittered (t) for time

Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Image source: PBRTe2 [Pharr & Humphreys 2010]

Compute stratified samples in sub-dimensions

- 2D jittered (x,y) for pixel
- 2D jittered (u,v) for lens
- 1D jittered (t) for time
- combine dimensions in random order

Image source: PBRTe2 [Pharr & Humphreys 2010]

Depth of Field (4D)

Reference

Fourier Analysis of Numerical Integration in Monte Carlo Rendering Image source: PBRTe2 [Pharr & Humphreys 2010]

Random Sampling

Uncorrelated Jitter

[Shirley 91]

Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Image source: Michael Maggs, CC BY-SA 2.5 21

// initialize the diagonal for (uint d = 0; d < numDimensions; d++)</pre> for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++)</pre> shuffle(samples(d,:));

// initialize the diagonal for (uint d = 0; d < numDimensions; d++)</pre> for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++)</pre> shuffle(samples(d,:));

Initialize

// initialize the diagonal for (uint d = 0; d < numDimensions; d++)</pre> for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++)</pre> shuffle(samples(d,:));

// initialize the diagonal for (uint d = 0; d < numDimensions; d++)</pre> for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++)</pre> shuffle(samples(d,:));

Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Shuffle rows

// initialize the diagonal for (uint d = 0; d < numDimensions; d++)</pre> for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++)</pre> shuffle(samples(d,:));

Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Shuffle rows

// initialize the diagonal for (uint d = 0; d < numDimensions; d++)</pre> for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++)</pre> shuffle(samples(d,:));

Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Shuffle rows

// initialize the diagonal for (uint d = 0; d < numDimensions; d++)</pre> for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++)</pre> shuffle(samples(d,:));

// initialize the diagonal for (uint d = 0; d < numDimensions; d++)</pre> for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++)</pre> shuffle(samples(d,:));

Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Shuffle columns

// initialize the diagonal for (uint d = 0; d < numDimensions; d++)</pre> for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++)</pre> shuffle(samples(d,:));

Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Shuffle columns

// initialize the diagonal for (uint d = 0; d < numDimensions; d++)</pre> for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++)</pre> shuffle(samples(d,:));

370-374. Academic Press, May 1994.

combine N-Rooks and Jittered stratification constraints

Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Kenneth Chiu, Peter Shirley, and Changyaw Wang. "Multi-jittered sampling." In Graphics Gems IV, pp.

// initialize float cellSize = 1.0 / (resX*resY); for (uint i = 0; i < resX; i++) for (uint j = 0; j < resY; j++)</pre> { samples(i,j).x = i/resX + (j+randf()) / (resX*resY); samples(i,j).y = j/resY + (i+randf()) / (resX*resY); }

shuffle x coordinates within each column of cells for (uint i = 0; i < resX; i++) for (uint j = resY-1; j >= 1; j--) swap(samples(i, j).x, samples(i, randi(0, j)).x);

// shuffle y coordinates within each row of cells for (unsigned j = 0; j < resY; j++)</pre> for (unsigned i = resX-1; i >= 1; i--) swap(samples(i, j).y, samples(randi(0, i), j).y);

Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Initialize

Shuffle x-coords

Shuffle y-coords

Shuffle y-coords

Shuffle y-coords

Shuffle y-coords

Shuffle y-coords

Multi-Jittered Sampling (Projections)

Multi-Jittered Sampling (Projections)

Multi-Jittered Sampling (Projections)

Multi-Jittered Sampling (Projections)

Multi-Jittered Sampling (Projections)

Multi-Jittered Sampling (Projections)

Multi-Jittered Sampling

Samples

Jittered Sampling Samples Expected power spectrum

Poisson-Disk/Blue-Noise Sampling

Enforce a minimum distance between points Poisson-Disk Sampling:

- Mark A. Z. Dippé and Erling Henry Wold. "Antialiasing through stochastic sampling." ACM SIGGRAPH, 1985.
- Robert L. Cook. "Stochastic sampling in computer graphics." ACM Transactions on Graphics, 1986.
- Ares Lagae and Philip Dutré. "A comparison of methods for generating Poisson disk distributions." Computer Graphics Forum, 2008.

Poisson Disk Sampling

L

Poisson Disk Sampling

L

Low-Discrepancy Sampling

Deterministic sets of points specially crafted to be evenly distributed (have low discrepancy).

- Entire field of study called Quasi-Monte Carlo (QMC)

Radical Inverse Φ_b in base 2

Subsequent points "fall into biggest holes"

Radical Inverse Φ_h in base 2

Subsequent points "fall into biggest holes"

2	k	Base 2	Φ_b
	1	1	.1 = 1/2

Radical Inverse Φ_b in base

Subsequent points "fall int biggest holes"

2	k	Base 2	Φ_b
	1	1	.1 = 1/2
Ĵ	2	10	.01 = 1/4

Radical Inverse Φ_b in base 2

Subsequent points "fall into biggest holes"

2	k	Base 2	Φ_b
\frown	1	1	.1 = 1/2
U	2	10	.01 = 1/4
	3	11	.11 = 3/4

Radical Inverse Φ_b in base 2

Subsequent points "fall into biggest holes"

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8

Radical Inverse Φ_b in base 2

Subsequent points "fall into biggest holes"

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8
5	101	.101 = 5/8

3		
R		
J		

Radical Inverse Φ_b in base 2

Subsequent points "fall into biggest holes"

VC Fourier Analysis of Numerical Integration in Monte Carlo Rendering

2

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/
5	101	.101 = 5/
6	110	.011 = 3/3

3		
3		
3		

Radical Inverse Φ_b in base 2

Subsequent points "fall into biggest holes"

VC Fourier Analysis of Numerical Integration in Monte Carlo Rendering

2

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/3
5	101	.101 = 5/3
6	110	.011 = 3/8
7	111	.111 = 7/8

3	
3	
3	
3	

Radical Inverse Φ_b in base 2

Subsequent points "fall into biggest holes"

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8
5	101	.101 = 5/8
6	110	.011 = 3/8
7	111	.111 = 7/8
•••		

3		
3		
3		
3		

Fourier Analysis of Numerical Integration in Monte Carlo Rendering

Halton: Radical inverse with different base for each dimension: $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$

- Halton: Radical inverse with different base for each dimension:
- The bases should all be relatively prime.

 $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$

- Halton: Radical inverse with different base for each dimension: $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$
- The bases should all be relatively prime.
- Incremental/progressive generation of samples

- Halton: Radical inverse with different base for each dimension: $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$
- The bases should all be relatively prime.
- Incremental/progressive generation of samples
- Hammersley: Same as Halton, but first dimension is k/N: $\vec{x}_k = (k/N, \Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$

- Halton: Radical inverse with different base for each dimension: $\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$
- The bases should all be relatively prime.
- Incremental/progressive generation of samples
- Hammersley: Same as Halton, but first dimension is k/N:
 - $\vec{x}_k = (k/N, \Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$
- Not incremental, need to know sample count, N, in advance

1 sample in each "elementary interval"

Fourier Analysis of Numerical Integration in Monte Carlo Rendering

1 sample in each "elementary interval"

1 sample in each "elementary interval"

Monte Carlo (16 random samples)

Monte Carlo (16 jittered samples)

Scrambled Low-Discrepancy Sampling

More info on QMC in Rendering

S. Premoze, A. Keller, and M. Raab. In SIGGRAPH 2012 courses.

- Advanced (Quasi-) Monte Carlo Methods for Image Synthesis.

