
Automagic’s Raytracing Renderer
Computer Graphics: Rendering, October 2024

Coursework 2

Sean Memery, Krzysztof Grykiel, Kartic Subr

1 Overview
Great news, Automagic were impressed by your previous work and have hired you as a creative
consultant! Your next task is to bootstrap the core renderer for the startup’s augmented reality
toolkit. For this assignment you are expected to develop code for a full raytracing renderer along
with more advanced features if you can. Automagic want a full report on your work including your
methodology and evaluation.

Your expected contribution is as follows: A basic raytracer that implements Blinn-Phong ren-
dering, implementation of reflective and refractive materials and a report outlining the steps taken
to implement your raytracer. On top of this, there are some more advanced features that Automagic
think would be a good inclusion, but aren’t required for a basic submission.

2 Specifications

2.1 Raytracer
Goal: Code a C++ raytracing renderer from scratch with the following features.

Features:

1. Image write (ppm format)
2. Camera implementation, with coordinate transformation
3. Intersection tests (sphere, triangles, cylinder)
4. Binary image writing (intersection/no intersection)
5. Blinn-Phong shading
6. Shadows
7. Tone mapping (linear)
8. Reflection
9. Refraction

10. Textures (on sphere, triangle, cylinder)
11. Bounding volume hierarchy as an acceleration structure

Constraints:

1. Make your program capable of loading a provided JSON scene file.
2. Output a ppm image of the scene.
3. Recreate the rendered images of the example scenes (not pixel perfect).

1

4. The code should be clean and readable, with indicative variable and function naming, and
should contain ample comments describing function’s operations and variable roles.

Example renders of a provided JSON scene are shown in figure 1. These images showcase the
expected behaviour of your raytracer and include a render of a custom scene with the advanced
submission features.

2.2 Pathtracer
Goal: Improve your raytracer with a path tracer with the following features.

Features:

1. Antialiasing via multi-sampling pixels
2. Defocus in finite-aperture cameras by sampling the camera’s aperture
3. Render materials with BRDF’s (e.g. microfacet)
4. Soft shadows via sampling area lights
5. Multi-bounce path tracing
6. An advanced feature of your choice (eg. Caustics, Volumetrics, fancy BRDFs, etc.)

Constraints: Same as those for the raytracer.

(a) Render Mode: binary (b) Render Mode: phong (c) Render Mode: pathtracer

Figure 1: Example renders of scene.json utilising the basic Raytracer features and of a custom
scene utilising the Pathtracer. Additional scenes are provided for you to test your raytracer with.

2

3 Marking scheme
A total of 100 points are assigned for this project, which will then be halved, i.e. its final contribution
to your grade will be at most 50%, depending on the marks. See the course website for clarification.
The marking scheme is described below.

1. Basic raytracer features . 35
(a) Image writing (3)
(b) Virtual pin-hole camera (5)
(c) Intersection tests (5)
(d) Blinn-Phong shading (5)
(e) Shadows (5)
(f) Tone mapping (2)
(g) Reflection (5)
(h) Refraction (5)

2. Intermediate raytracer features . 15
(a) Textures (5)
(b) Acceleration hierarchy (10)

3. Advanced raytracer features . 20
(a) Pixel sampling (5)
(b) Lens sampling (5)
(c) BRDF sampling (5)
(d) Light sampling (5)

4. Report . 10
(a) Conciseness (5)
(b) Effectiveness (5)

5. Exceptionalism . 20

This coursework is meant to be an independent exercise and so create your own code and scenes.
Do not collaborate with each other to actively write code. You are encouraged to discuss and
brainstorm general concepts pertaining to the coursework or the use of programming assistants.

The use of generative AI is encouraged for this coursework, but not required. Bear in mind that
the workload was designed assuming that students would use AI (as demonstrated in class), so avoid
it at your own risk!

If you execute the basic raytracer, along with the report, you can expect a mark of about 45%.
The expected time for students who have kept up with lectures and tutorials to attain this is about
16h. The intermediate features are expected to take about 15h and can allow you to score about
65% on this coursework. Be warned that the advanced submission is not required and could lead
to you spending a large amount of time. We do not recommend that you attempt the advanced
features if you have already spent more than 35h on the raytracer. Even so, we strongly recommend
that you limit your time to at most 12h on the advanced features.

Some important tips include: a) design and plan your implementation to be modular; b) use
programming assistants to obtain code for individual modules; c) test individual modules; d) engage
with the instructor/TA if some component is taking too long; and e) start early.

4 Deliverables
Submit a compressed .zip with your student ID as the name. e.g. "s123456.zip" via Learn. Any
deviations from the following format will incur a penalty of 5% of the marks for impacted sections.

3

4.1 Folder structure
The structure of the zip should be as follows:

s123456

FeatureList.txt

Code

Makefile

raytracer.cpp

raytracer.h

...

TestSuite

binary_scene.ppm

phong_scene.ppm

binary_primitives.ppm

mirror_image.ppm

simple_phong.ppm

Report

s123456.pdf

FeatureList.txt:
List all the features in this spec, and for each, whether you have implemented it and whether you
have demonstrated it working fully.

Code:
The Code folder should simply contain all of the code used to create your program. This should
include a Makefile used to compile the source code, and the individual cpp and header files.

TestSuite:
Include images produced by your raytracer with each of the files provided as part of the test suite.
For scene.json, include both the images (binary and phong modes).

Report:
The folder Report should contain only one file, which will use your student ID (or exam number)
as the filename. This will be your report as a PDF. No other format will be accepted. Your report
should explain the steps taken to implement your ray tracer, with detailed descriptions of feature im-
plementations, and rendered images (new/additional scenes) illustrating each of its abilities. Explain
your work, step by step, with inline images. Figures should be numbered, annotated, referenced and
clearly visible. Therefore, the report should include a section for each implemented feature (notated
by its number in the specification section, e.g. for shadows: Basic Raytracer e - Shadows) and an
explanation of how it was implemented and an evaluation of the implementation.

5 Tips
There are many moving pieces in a raytracer program and approaching it from scratch can be
challenging. Programming assistants will be extremely helpful for code generation, especially if you

4

aren’t too familiar with C++ programming but as explained in class they are only as effective as the
design and prompts that are fed to them.

• we recommend familiarising yourself with the high level components that make up a raytracer.

• Make a high level plan of how your program will synchronise the components.

• Try to modularise your design for easy testing and flexibility (in case you want to implement
advanced features).

• If you have implemented many of the advanced features (but not the acceleration hierarchy
for example) you may find that your rendering could be slow.

• A good way to improve the efficiency of your code is using compiler optimisations such as
the -03 flag or taking advantage of multi-threading with openMP! Simply import the openMP
library and write #pragma omp parallel in front of your main loop.

• If you find yourself needing more samples than your computer can handle in a reasonable
amount of time for your path tracer, try importance sampling.

• If you’d like to have custom shapes in your scenes to show off some aspects of your work,
consider preparing the model in Blender and then writing a Blender script that translates that
object into the JSON format your raytraces is using. Hint: Most meshes can be represented
as a series of triangles.

• You may find it inconvenient to work with ppm images in Windows, there exist VSCode ex-
tensions that are very helpful for this.

• Your raytraced images of the scenes in the test suite should look like this:

binary_primitives.png simple_phong.png mirror_image.png

6 Plagiarism
Automagic is very concerned that they will be sued for infringement. This coursework needs to
be your original work, up to sections provided by programming assistants. You are not allowed
to directly import code from online tutorials, most notably the Raytracing in One Weekend series.
Your code will be checked for similarities with publicly available codebases such as RTiOW. A high
degree of similarity will lead to further investigations.

You may test the similarity (against RTioW) yourself by using JPlag. Simply follow the instruc-
tions provided on the github page! If you are concerned that the reported similarity is high, please
check with the instructor immediately.

5

https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fmarketplace.visualstudio.com%2Fitems%3FitemName%3Dngtystr.ppm-pgm-viewer-for-vscode&data=05%7C02%7C%7Ce7a4bec102b847398bf708dce47892a9%7C2e9f06b016694589878910a06934dc61%7C0%7C0%7C638636453738266435%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=eTPYUTi6FgkBmYFULr9E2ggungk4xi%2FbgpIjVG1H7S0%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fmarketplace.visualstudio.com%2Fitems%3FitemName%3Dngtystr.ppm-pgm-viewer-for-vscode&data=05%7C02%7C%7Ce7a4bec102b847398bf708dce47892a9%7C2e9f06b016694589878910a06934dc61%7C0%7C0%7C638636453738266435%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=eTPYUTi6FgkBmYFULr9E2ggungk4xi%2FbgpIjVG1H7S0%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fraytracing.github.io%2F&data=05%7C02%7C%7Ce7a4bec102b847398bf708dce47892a9%7C2e9f06b016694589878910a06934dc61%7C0%7C0%7C638636453738250750%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=mTBbgLGtl0d%2BvMyZU%2FkftHUzPBnpFptN9yO8i9mngb0%3D&reserved=0
https://github.com/jplag/JPlag

	Overview
	Specifications
	Raytracer
	Pathtracer

	Marking scheme
	Deliverables
	Folder structure

	Tips
	Plagiarism

