Computer Graphics

Lecture 7: Monte Carlo Integration Kartic Subr

Using randomness

Georges-Louis Leclerc, Comte de Buffon (1707-1788)

Using randomness

Suppose we have a floor made of parallel strips of wood, each the same width, and we drop a needle onto the floor. What is the probability that the needle will lie across a line between two strips?

Using randomness

Buffon's needle simulation

\qquad
\qquad

https:/ / people.orie.cornell.edu/sbanerjee/courses/orie4580f20/ http://dmcpress.org/cm/buffon/experiment.html

Random variables: refresher

$$
\begin{aligned}
& \text { X Expectarcion }\langle x\rangle=\int_{a}^{b} x p(x) d x \\
& \text { Variance } \operatorname{Var}(x) \\
& x \in[a, b] \\
& x \sim p(x) \\
& \xrightarrow[1]{\text { p....-1 }}
\end{aligned}
$$

Numerical integration using random samples

$$
\begin{gathered}
\langle x\rangle=\int x p(x) d x \\
\left\langle f(x) d x \int_{0}^{\langle f(x)\rangle}=\int_{0}^{1} f(x) p(x) d x\right. \\
\text { average. }
\end{gathered}
$$

From integrating circles to general functions

$$
\begin{aligned}
& I=\int_{0}^{1} f(x) d x \\
& \begin{array}{l}
x_{i} \sim v_{[0, i]} \\
\mu=\sum \frac{f\left(x_{i}\right)}{N}
\end{array} \\
& \langle\mu\rangle=I \\
& \begin{array}{c}
x_{i} \sim \frac{b(x)}{} \\
\langle f(x)\rangle=\{f(x) \cdot p(x) d x \\
\langle g(x)\rangle=\int\left(\frac{f(x)}{f(x)}\right) p(x) d x \\
n^{n} g(x)=\frac{d x}{p(x)}
\end{array}
\end{aligned}
$$

Importance sampling: intuition

$$
\begin{aligned}
& x_{i} \sim p(x) \\
& I=\int_{0}^{1} f(x) d x \\
& \mu_{p}=\frac{r}{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
\end{aligned}
$$

