


𝑓! 𝑥 = 𝑓 𝑥 . 𝑠(𝑥)

sampled function sampling function
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𝐹! 𝜔 = 𝐹 𝜔 ⊗ 𝑆(𝜔)



𝐹" 𝜔 = 𝑅 𝜔 . 𝐹 𝜔 ⊗ 𝑆 𝜔 = 𝐹 𝜔

𝑅 𝜔

multiply convolve

zero out aliases

select central replica

reconstructed signal
original signal
if  sampling is
sufficiently dense

reconstruction 
function/filter/kernel



𝑓" 𝑥 = 𝑟 𝑥 ⊗ ( 𝑓 𝑥 . 𝑠 𝑥 ) 𝐹" 𝜔 = 𝑅 𝜔 . 𝐹 𝜔 ⊗ 𝑆 𝜔 = 𝐹 𝜔



𝑓" 𝑥 = 𝑟 𝑥 ⊗ ( 𝑓 𝑥 . 𝑠 𝑥 ) 𝐹" 𝜔 = 𝑅 𝜔 . 𝐹 𝜔 ⊗ 𝑆 𝜔 = 𝐹 𝜔

aliasing



𝑓" 𝑥 = 𝑟 𝑥 ⊗ ( 𝑓 𝑥 . 𝑠 𝑥 ) 𝐹" 𝜔 = 𝑅 𝜔 . 𝐹 𝜔 ⊗ 𝑆 𝜔 = 𝐹 𝜔

Fourier Transform

Inverse Fourier Transform



Sampling rate > 2B  guarantees no aliasing

Provided:
1) Function is bandlimited (B is max frequency)
2) Sampling is regular (comb function)
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structure + random



regular structure but not a grid
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reject sample if  
closer than 
minimum distance
to any sample



reject sample if  
closer than 
minimum distance
to any sample











Shiny ball, out of focusShiny ball  in motion

…
pixel

multi-dim integral

Domain: pixel area x shutter time x aperture area x 1st bounce x 2nd bounce
Integrand: radiance (W m-2 Sr-1)

…

…



High variance High bias



comb (regular grid)

16 spp

64 spp

256 spp

1 spp

4 spp

16 spp

But this is numerical 
integration, not 
reconstruction !

What is the connection
between these two 
classes of  problems?



jittered gridcomb (regular grid)

structured artifacts are 
visually disturbing

random noise is 
less objectionable
although undesirable

16 spp

1 spp
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𝑥! drawn randomly in [0,1]
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𝐼< 𝜇 >

bias

variance



𝐼

estimator 1 estimator 2



log N

log-Error Monte Carlo convergence: O(1/ 𝑁)
slope = -1/2



log N

log-Error
better rate of  convergence

lower error
(same slope)



0 1

1

pdf random 
distribution

modified 
distribution

change sampling distribution introduce sample correlations
(e.g. using a grid-structure)

grid points

jittered samples


