

Computer Graphics

Lecture 12: Sampling II

Kartic Subr

Convolution theorem

Sampling = convolution (Fourier domain)

Convolution results in overlapping spectra

We can see the central replica and aliases

Pushing further removes overlaps

Higher sampling rate = stretched out spectrum

Removing aliases: 1) Increase sampling rate

Removing aliases: 2) Crop signal (Fourier)

reconstructed signal $F_{r}(\omega) = R(\omega) \cdot (F(\omega) \otimes S(\omega)) = F(\omega)$ multiply convolve

original signal if sampling is sufficiently dense

Convolve (Primal) = Crop (Fourier)

$f_r(x) = r(x) \otimes (f(x) \cdot s(x))$

 $F_r(\omega) = R(\omega)$. ($F(\omega) \otimes S(\omega)$) = $F(\omega)$

(Nyquist-Shannon) Sampling Theorem

Sampling rate > 2B guarantees no aliasing

Provided:

- 1) Function is bandlimited (B is max frequency)
- 2) Sampling is regular (comb function)

For any dimension: e.g. pixels in 2D

Minimum distance between samples

structure + random

Reconstruction in animals' visual systems

Vision Res. Vol. 22, pp. 1205 to 1210, 1982 Printed in Great Britain

> 0042-6989/82/091205-06\$03.00/0 Pergamon Press Ltd

SPECTRAL ANALYSIS OF SPATIAL SAMPLING BY PHOTORECEPTORS: TOPOLOGICAL DISORDER PREVENTS ALIASING

JOHN I. YELLOTT JR Cognitive Science Group, School of Social Sciences, University of California, Irvine, CA 92717, U.S.A.

(Received 22 October 1981)

Abstract-To determine whether the spatial disorder of human photoreceptors is sufficient to prevent aliasing distortion, optical transform techniques were used to compute the power spectrum of a 12' × 13' array of foveal cones treated as sampling points and also the post-sampling spectra of gratings at spatial frequencies above (80 c/deg) and below (30 c/deg) the nominal Nyquist frequency for this array. No trace of aliasing was observed in the spectrum of the sampled 80 c/deg grating. The conclusion is that spatial disorder in foveal receptor placement allows alias-free sampling without introducing any appreciable spatial noise.

from values sampled at discrete points, mismatches otherwise be aliased are filtered out by the optical between image bandwidth and sampling rate can give transfer function of the camera (Schade, 1975). rise to a distortion known as "aliasing" whereby high spatial frequencies in the original image appear as low tinuous retinal images by discrete arrays of photo-

rise to a distortion known as "aliasing" whereby high Vertebrate vision begins with the sampling of conbetween image bandwidth and sampling rate can give transfer function of the camera (Schade, 1975). from values sampled at discrete points, mismatches otherwise be aliased are filtered out by the optical When a continuous optical image is reconstructed image at the optical stage i.e. frequencies that would

When a continuous optical image is reconstructed image at the optical stage-i.e. frequencies that would

Vertebrate vision begins with the sampling of con-(13) fecancocies in its reconstruction (Pearson receiver Conveniently a spatial frequencies in the original image appear as low tinuous retinal images by discrete arrays of photo-

regular structure but not a grid

Reconstruction in animals' visual systems

Gap in low-frequencies in Fourier spectrum

not a comb!

appear random, but minimum distance enforced

Random sampling spectrum is flat

Gap in low-frequencies in Fourier spectrum

not a comb!

appear random, but minimum distance enforced

Generating samples: Poisson disk sampling

Generating samples: Poisson disk sampling

reject sample if closer than minimum distance to any sample

Dart throwing

Another approach: start with random samples

Move them until constraint satisfied

Relaxation method

Monte Carlo path tracing — sampling

Image space

Visible spectrum

Aperture

Exposure time

Material reflectance functions

Direct illumination

Indirect illumination

Light transport = integration

Integrand: radiance (W m⁻² Sr⁻¹)

Domain: pixel area x shutter time x aperture area x 1st bounce x 2nd bounce

Variance and bias

High variance

High bias

For any dimension: e.g. light paths > 2D

comb (regular grid)

But this is numerical integration, not reconstruction !

What is the connection between these two classes of problems?

Adding randomness is good. Why?

random noise is less objectionable although undesirable

structured artifacts are visually disturbing

Monte Carlo integration is an approximation

Error due to sampling: histogram of estimates the university of edinburgh $<\mu>$ bias

variance

Which estimator is better?

Convergence as N is increased

Two classes of improvements

better rate of convergence

log-Error

But how?

introduce sample correlations (e.g. using a grid-structure)

grid points

jittered samples