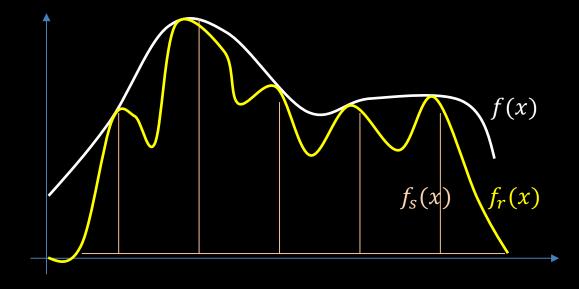
Computer Graphics

Lecture 14: Sampling I

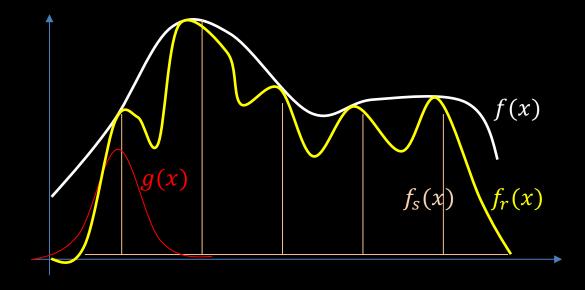
Kartic Subr

What is sampling?

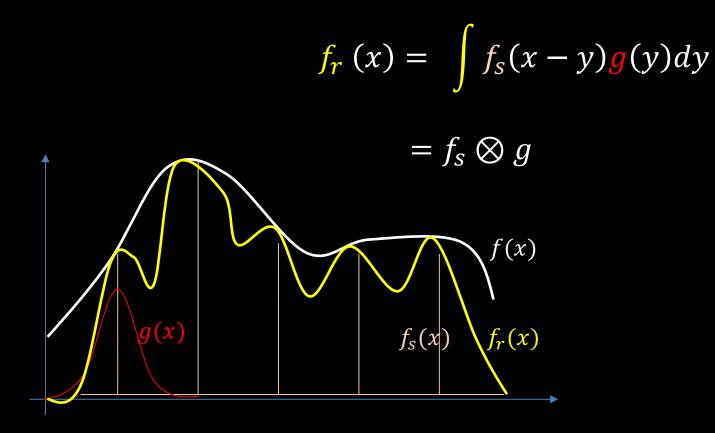
Function reconstruction problem



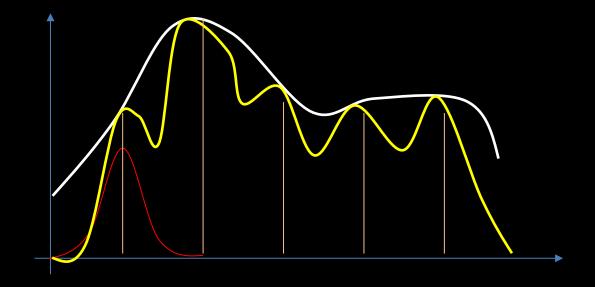
Interpolate samples using a fixed function g(x)



Convolution with a `reconstruction kernel'



How to reduce reconstruction error?



Some preliminaries: this lecture

Dirac-Delta distribution

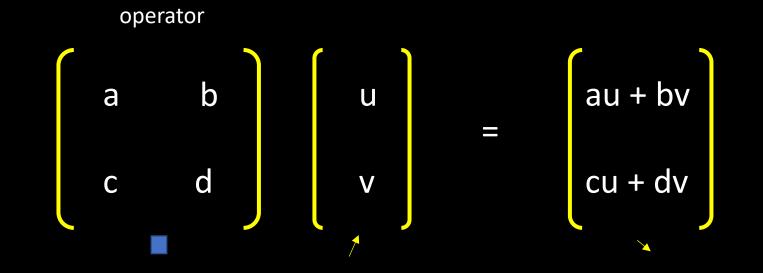
Dirac-Delta distribution

1. Zero everywhere else

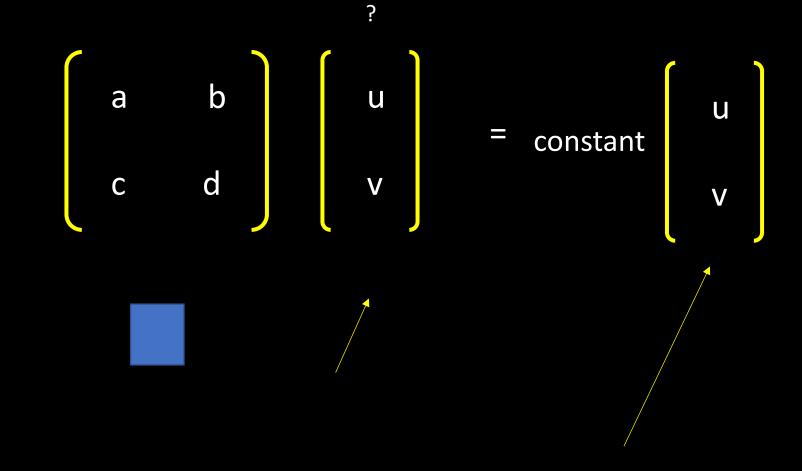
2. Unit integral

3. Identity function for convolution

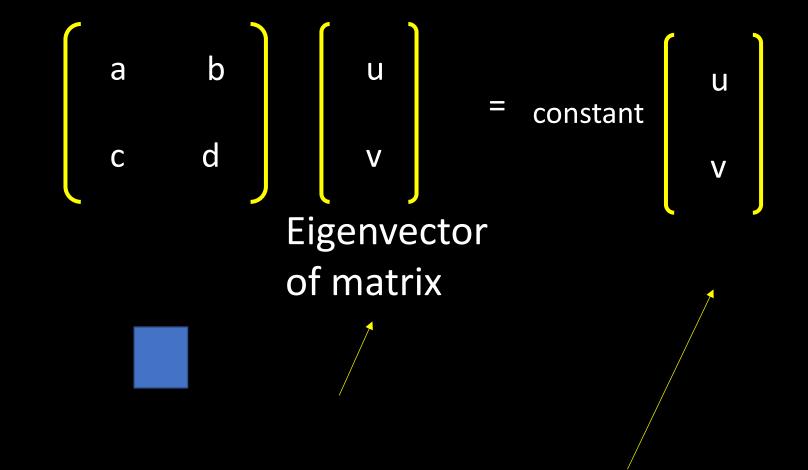
Recall: 'Operate on' a vector?



Which vector – unaffected by operator?

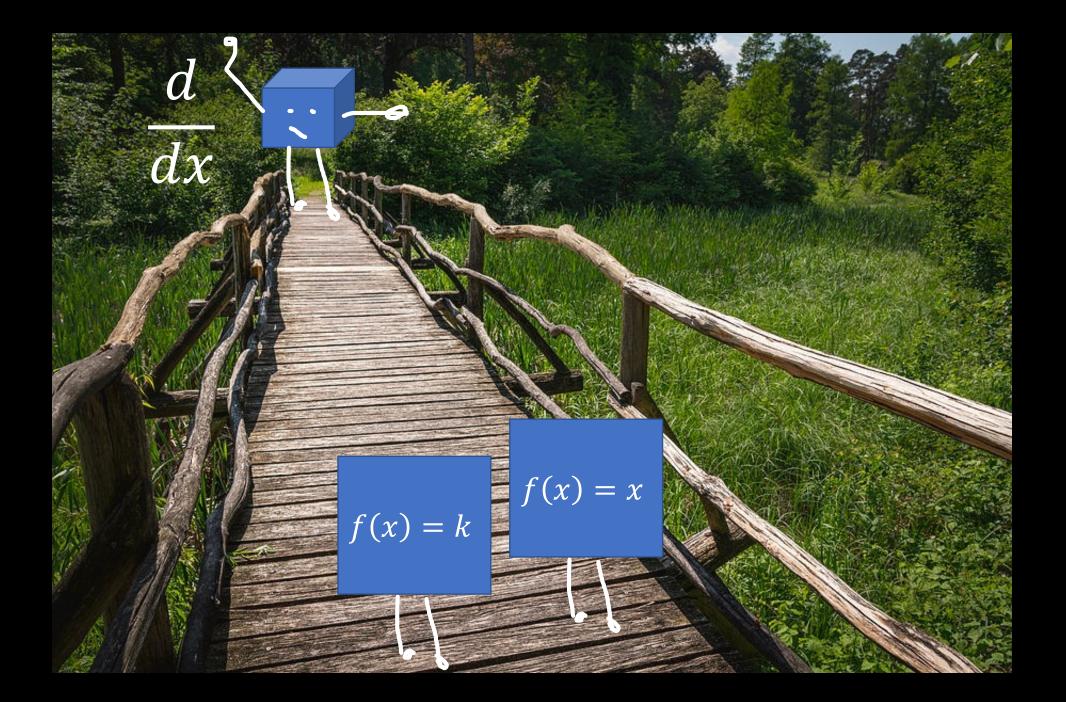


Which vector – unaffected by operator?



Continuous - Eigenfunctions

 $\frac{d}{dx} = \begin{array}{c} \text{Eigenfunction} \\ \text{of differential} \\ \text{operator?} \end{array}$



Move out of my way. I'm a derivative operator!!

 e^{x}

You can't bully me. Meet your Eigenfunction. You won't affect me!

Fourier analysis: origin and intuition

Eigenfunction of the differential operator

$$\frac{\mathrm{d}}{\mathrm{d}x}e^{\lambda x} = \underbrace{\lambda}_{\mathrm{scaling}}e^{\lambda x}$$

Commissaire Joseph Fourier, 1807 Messium Le Comt d'altange la Marca le 28 Septembre 1811, de Cerute d'aplace, vie -9/4 Malu béorie du mousement de la Chaleur dans - vu hegendre. les corps solides. 7 octobre 1811 11th Ceprix a été decerne à M. Et ignen regunt numeri. (Plato) LeBaron Fourier (Josep) Frifet du Dipartemt de l'Giere à Grenoble.

Use this to solve differential equations

• Eigenfunction of the differential operator

$$\frac{\mathrm{d}}{\mathrm{d}x}e^{\lambda x} = \lambda e^{\lambda x}$$
scaling

differential equations -> algebraic equations

$$f(x) = \sum_{\substack{i=1 \\ \text{projection}}}^{N} e^{\lambda_i x}, \quad \frac{\mathrm{d}}{\mathrm{d}x} f(x) = \sum_{\substack{i=1 \\ i=1}}^{N} \lambda_i e^{\lambda_i x}$$

If λ is complex, then sinusoids ...

Euler's Formula

$$e^{i\phi} = \cos\phi + i\sin\phi$$

The Fourier domain

A special trigonometric series which could represent any arbitrary function

Image credits: Wikipedia

The continuous Fourier transform

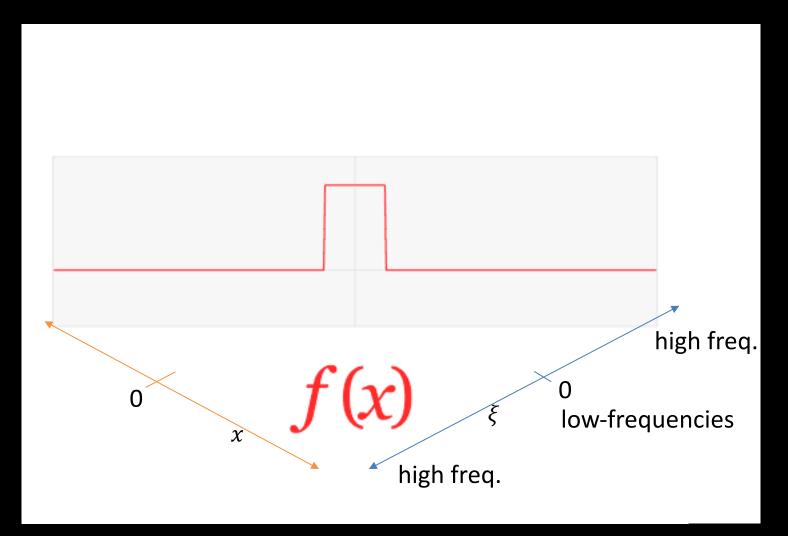
$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i \omega x} dx$$
Fourier $-\infty$ primal
domain (space, time, etc.)
domain

The Fourier transform: `frequency' domain

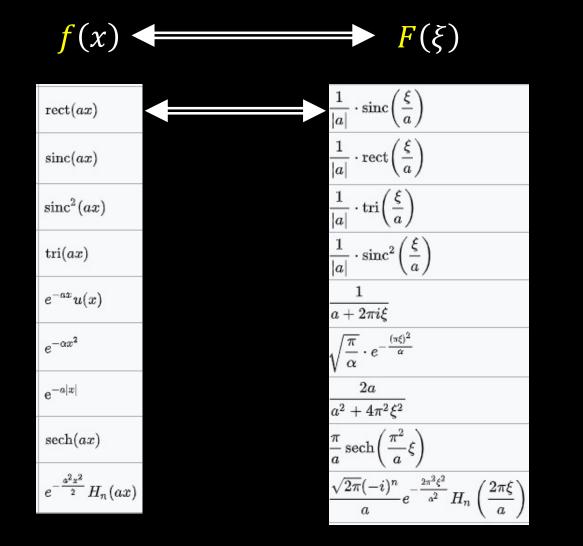
$$\begin{split} \hat{f}(\omega) &= \int_{-\infty}^{\infty} f(x) e^{-2\pi \imath \omega x} \mathrm{d}x \\ \hat{f}(\omega) &= \int_{-\infty}^{\infty} f(x) \cos(2\pi \omega x) \mathrm{d}x + \imath \int_{-\infty}^{\infty} f(x) \sin(2\pi \omega x) \mathrm{d}x \\ & \underset{\text{frequency}}{\text{frequency}} \quad -\infty \quad & -\infty \end{split}$$

projection onto sin and cos

The Fourier Transform



Fourier "duals"



What can you take the Fourier transform of?

Hi, Dr. Elizabeth? Yeah, Vh... I accidentally took the Fourier transform of my cat... Meow! xkcd.com

A single sample:

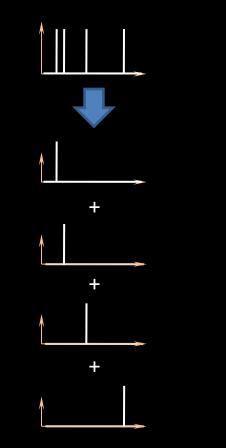
$$f(x) = \delta(x - x_k)$$

$$\hat{f}(\omega) = \underline{e^{-2\pi \imath x_k \omega}}_{\text{phase}}$$

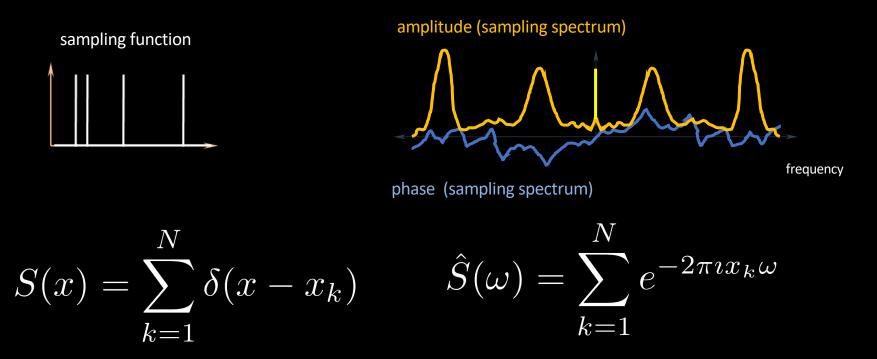
amplitude = 1

$$\hat{f}(\omega) = \cos(2\pi i x_k \omega) + i \sin(2\pi i x_k \omega)$$

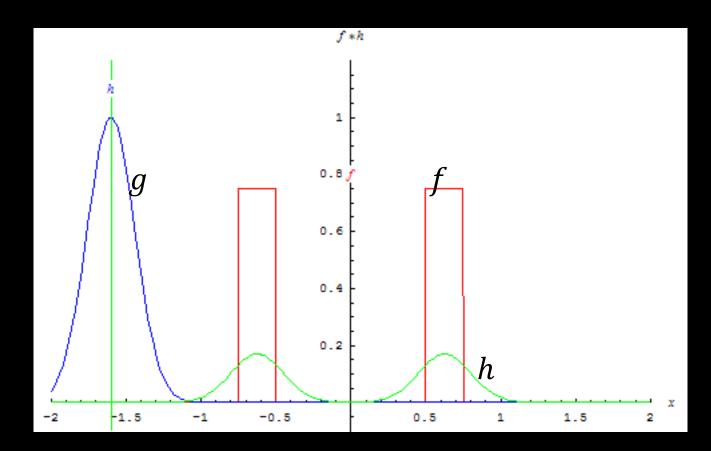
sampling function = sum of Dirac deltas



Fourier spectrum of the sampling function



Remember convolution?



$$h(x) = \int f(x - y)g(y)dy$$
$$h(x) = f(x) \otimes g(x)$$

Fourier Transform of Convolution ?

 $h(x) = f(x) \otimes g(x)$

Fourier Transform of Convolution ?

 $h(x) = f(x) \otimes g(x)$

 $\mathcal{F}(h(x)) = \mathcal{F}(f(x) \otimes g(x))$

Fourier Transform of Convolution ?

 $h(x) = f(x) \otimes g(x)$

$\mathcal{F}(h(x)) = \mathcal{F}(f(x) \otimes g(x))$

 $H(\xi) = F(\xi) G(\xi)$

Convolution theorem

 $\mathcal{F}(f(x) \otimes g(x)) = F(\xi) G(\xi)$

Fourier transform of a convolution

product of Fourier transformed functions

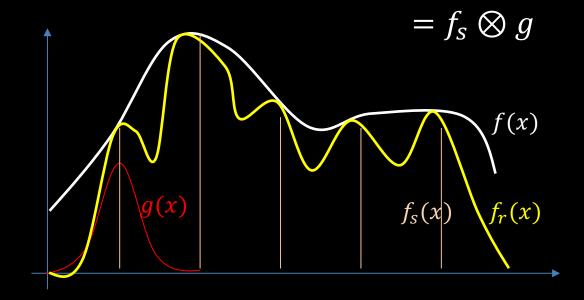
Alternative way to calculate convolutions

$$h(x) = \int f(x-y)g(y)dy$$

Fast Fourier Transform1.Obtain Fourier transforms F and G2.Multiply, so H = F.GFast Fourier Transform3.Take the inverse Fourier transform of H4. $h = H^{-1}$

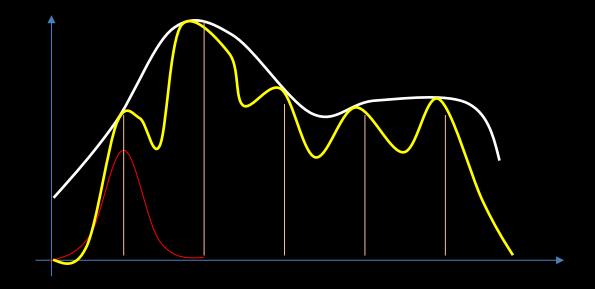
What if we apply the Fourier transform?

$$f_{r}(x) = \int f_{s}(x-y)g(y)dy$$

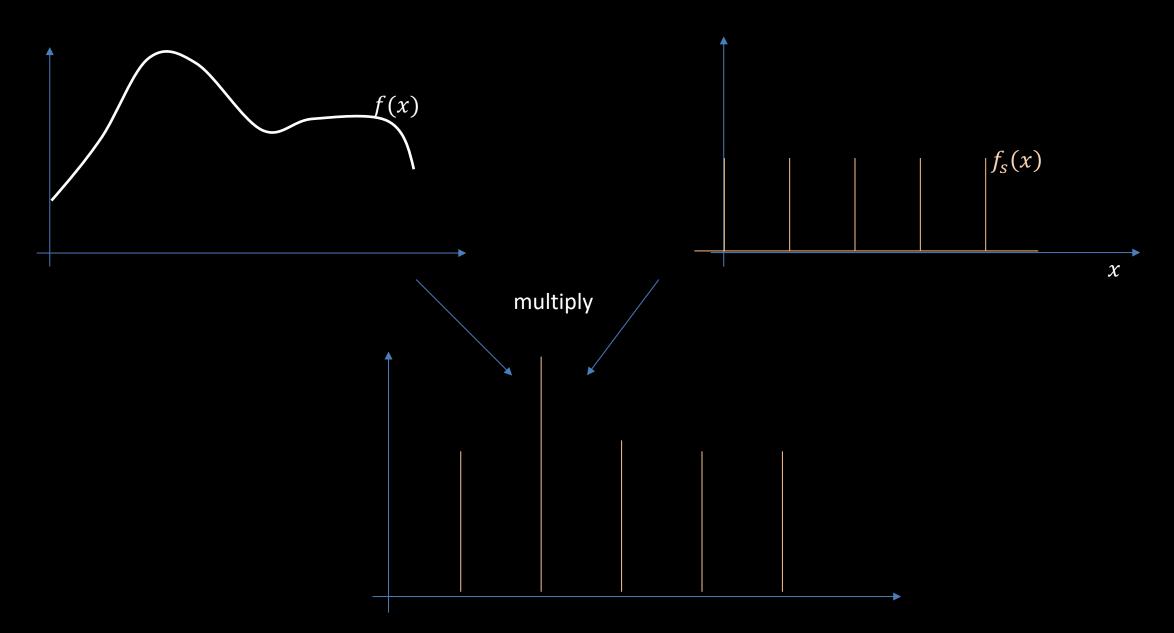


$$F_{\gamma}(\xi) = F_{S}(\xi) G(\xi)$$

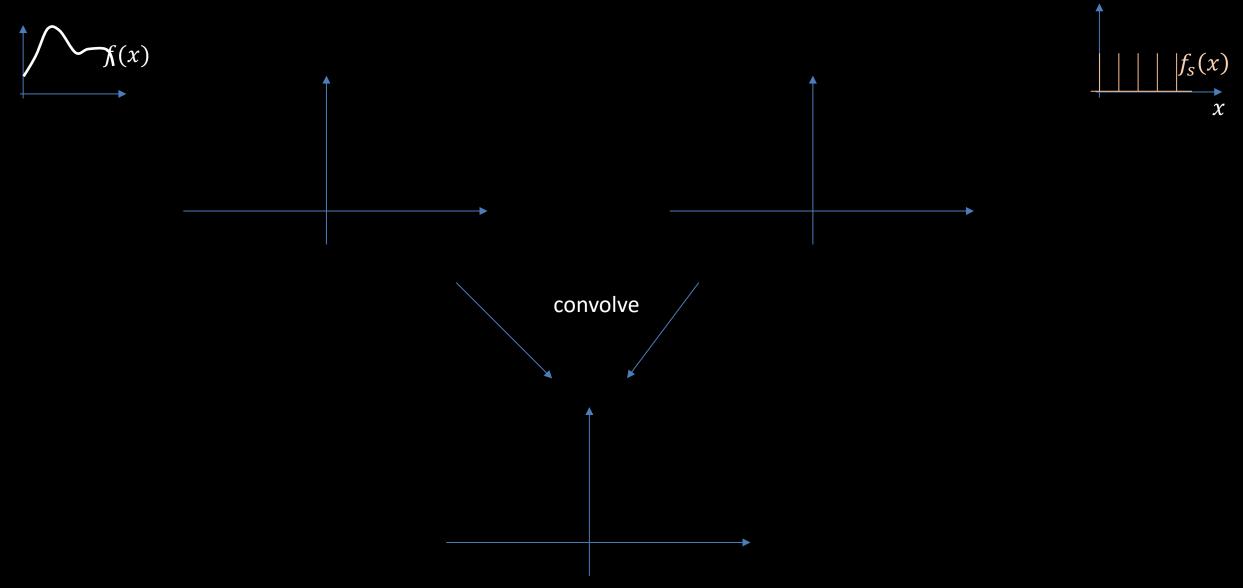
How to assess sampling and reconstruction error?



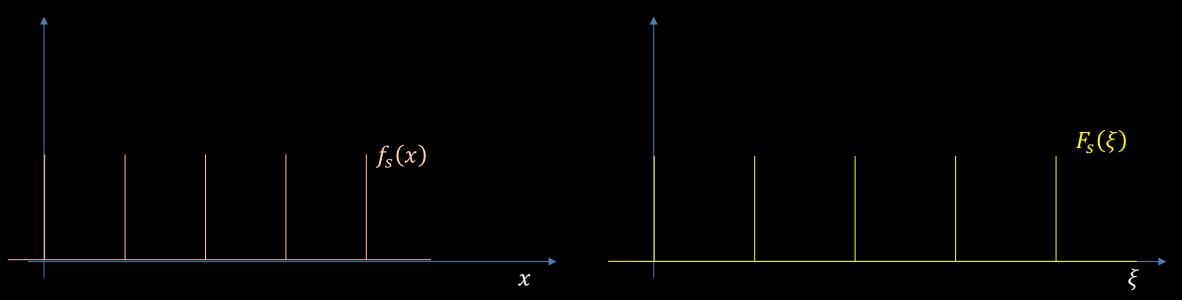
Focus on the sampling operation first:



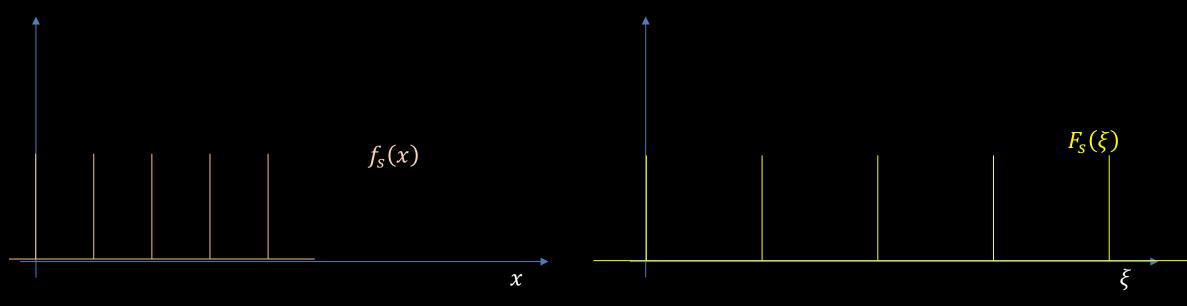
What are these in the Fourier domain?



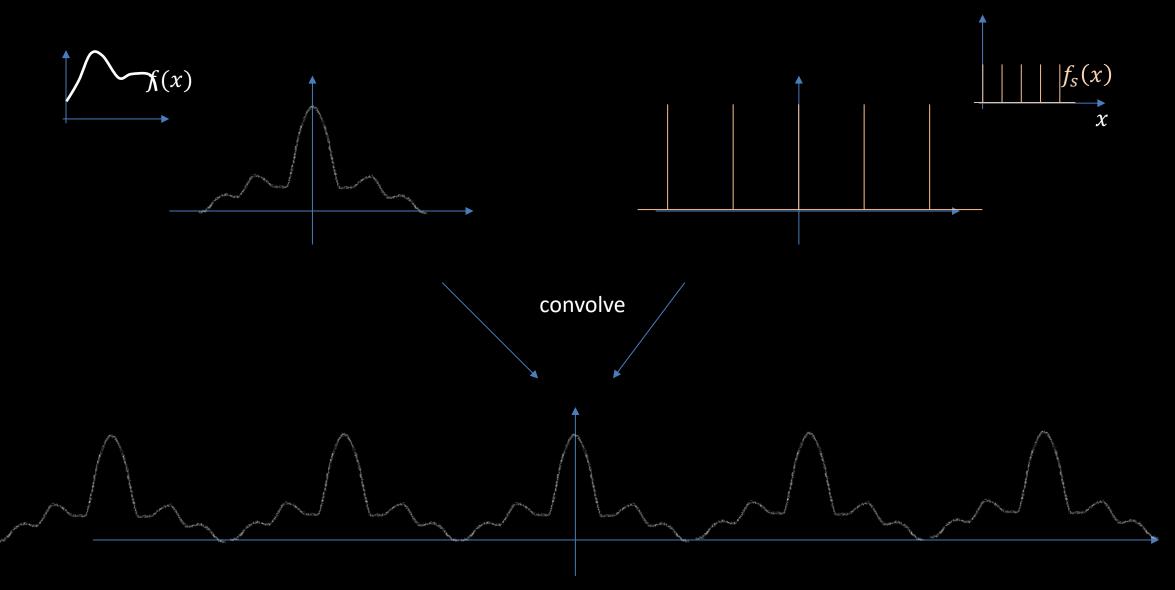
Intuition: Sampling function



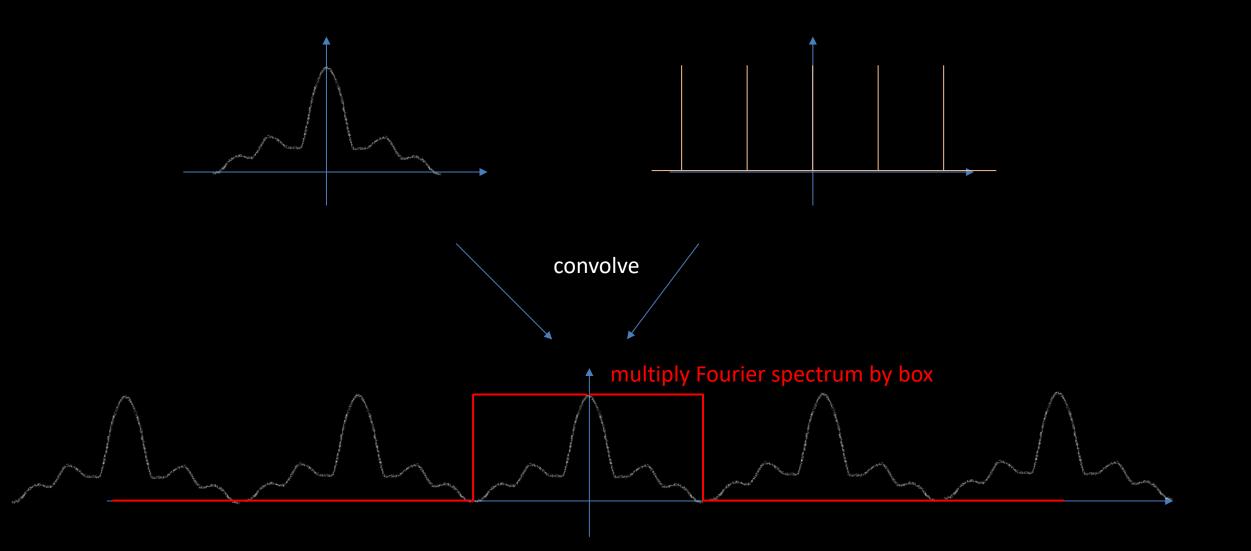
Intuition: Sampling function



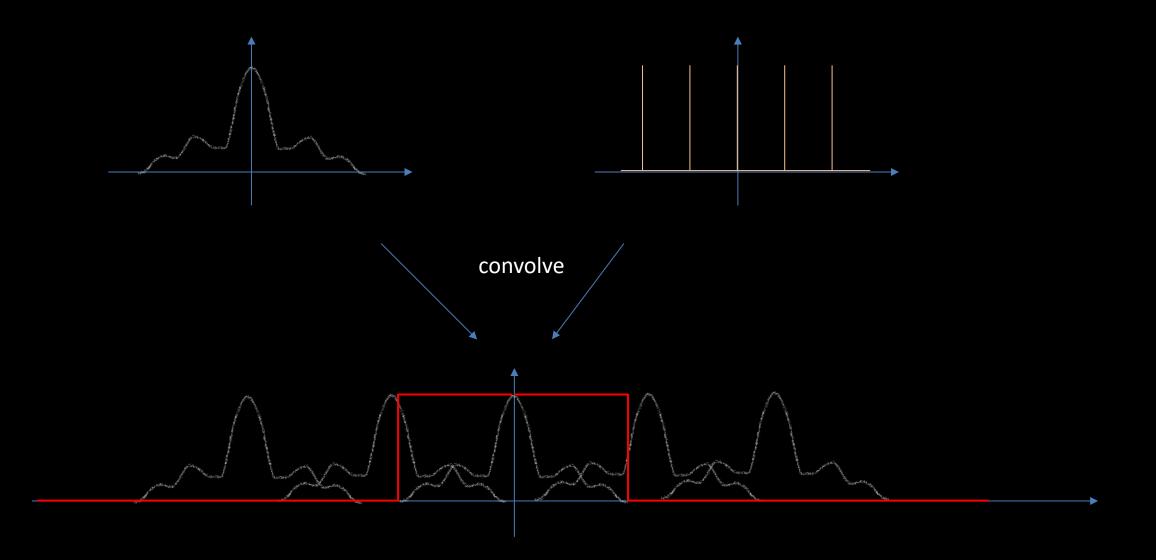
Sampling in the Fourier Domain



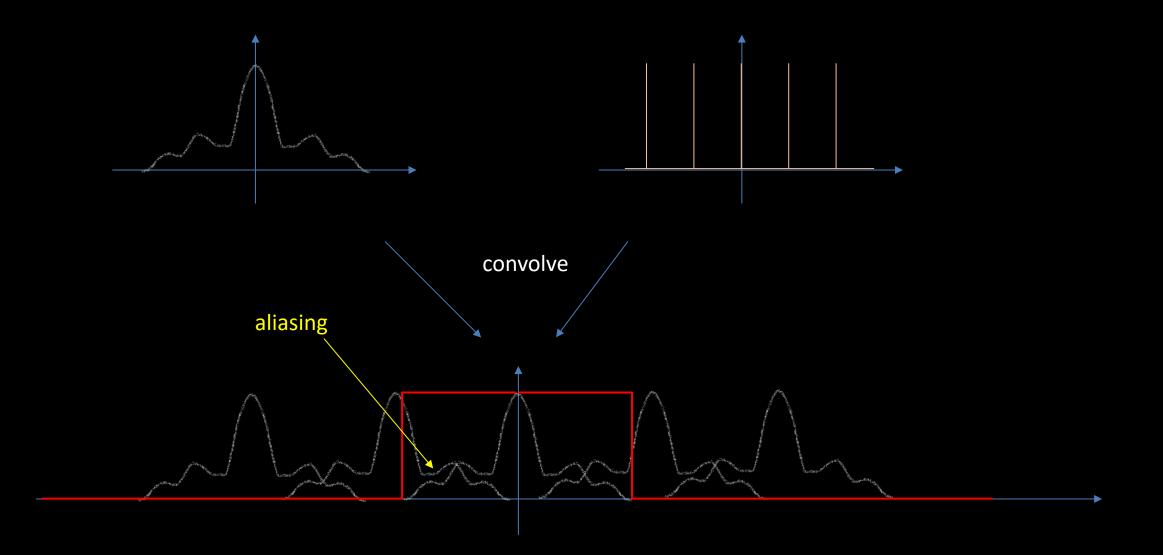
How to remove aliases?



Sparse sampling (squeezed in Fourier domain)



Sparse sampling (squeezed in Fourier domain)

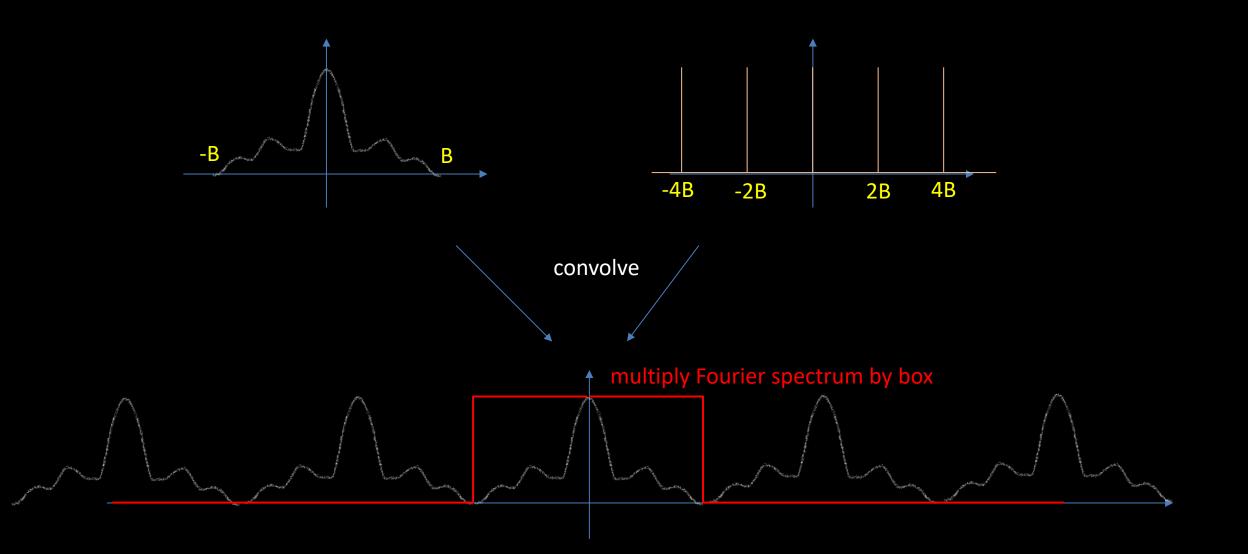


Nyquist-Shannon Sampling theorem

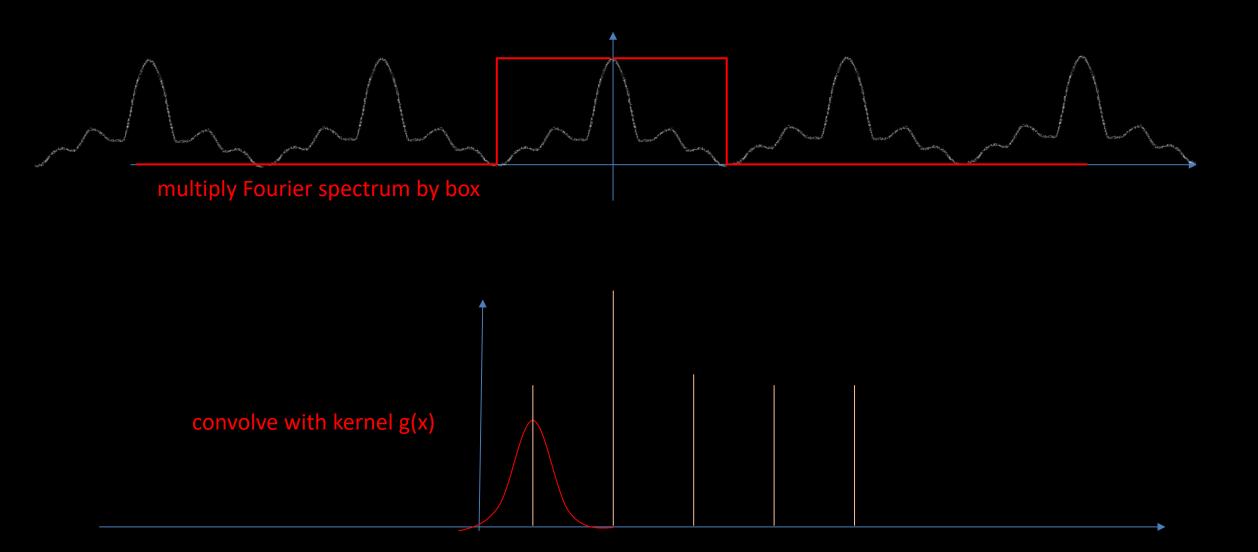
If a function x(t) contains no frequencies higher than B hertz,

it is completely determined by giving its ordinates at a series of points spaced 1/(2B) seconds apart.

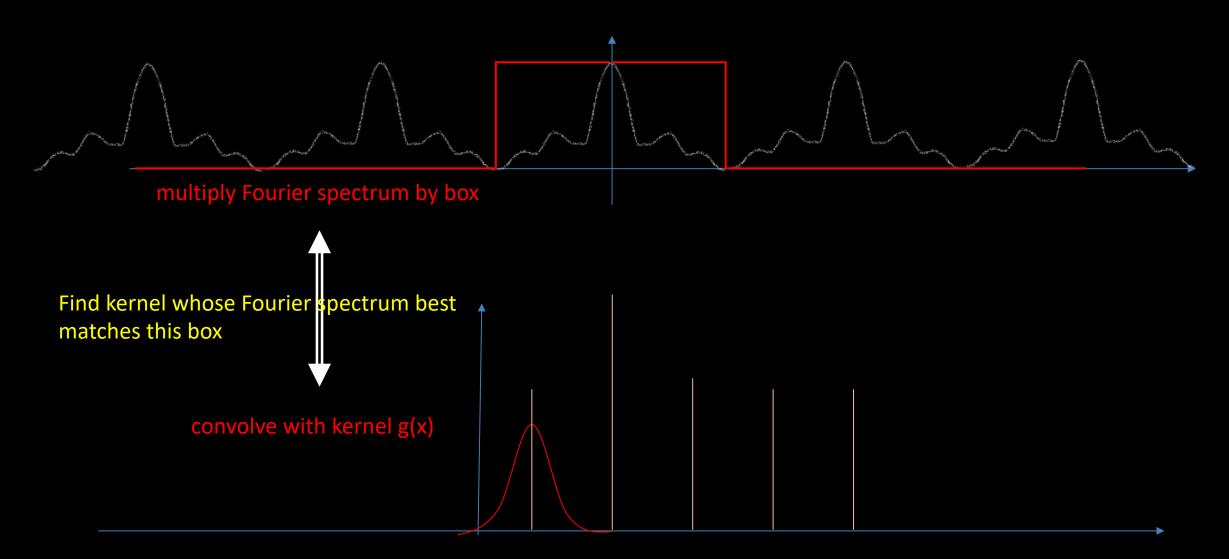
Multiplication by a box in the Fourier (frequency) domain...



... convolution with a reconstruction kernel (in x)



Is a convolution with a reconstruction kernel (in the primal, or x)



To be continued ...