Computer Graphics

Lecture 13: Path tracing
Kartic Subr

四辞品路新

Send＠OHECTR to（0113） 3209662You can participate

I spent too long on CW1...

- I spent too much time on little details
- I should have hacked it together
- I should have focused on completing easy tasks from the marking scheme
- I should have started earlier

Incident or incoming radiance at x

Differential irradiance at infinitesimal patch

Outgoing radiance along a direction

Linear optics: reflected radiance \propto irradiance

$$
\mathrm{d} L\left(x, \omega_{o}\right)=\rho\left(\omega_{i}, \omega_{o}\right) \mathrm{d} E_{i}
$$

Constant of proportionality is a function!

$$
\mathrm{d} L\left(x, \omega_{0}\right)=\rho\left(\omega_{i}, \omega_{o}\right) \mathrm{d} E_{i}
$$

Constant for a given pair of incident-outgoing directions
Determines appearance of opaque materials

Bidirectional Reflectance Distribution Function (BRDF)-

BRDF slice per incident direction

BRDF slice per incident direction

BRDF measurement - gonioreflectometer

tabulate 4D measured values?

phase functions
phase functions common1y used material models
BSDF

BSSRDF

SvBRDF

Reflection: multiple incident rays

$$
L\left(x, \omega_{o}\right)=\sum_{i} \rho\left(\omega_{i}, \omega_{o}\right) \mathrm{d} E_{i}
$$

Add emission from surface at x

In the limit ...

$$
L\left(x, \omega_{0}\right)=L_{e}\left(x, \omega_{o}\right) .+\int_{H^{2}} \rho\left(\omega_{i}, \omega_{o}\right) L\left(x, \omega_{i}\right)\left(\omega_{i} \cdot \mathrm{n}\right) \mathrm{d} \omega_{i}
$$

surface emission

> hemisphere

incident radiance
cosine dependence
... the rendering equation 【Kaiva 86$]$

The rendering equation

[Kajiya 86] https://dl.acm.org/citation.cfm?id=15902

Contrast with Whitted raytracing

How to get 'soft' shading and lighting effects?

Solving the rendering equation

Estimate integrals recursively

1) Sample hemisphere at last bounce to camera

Estimate integrals recursively

1) Sample hemisphere at last bounce to camera
2) Trace each sample ray back to intersection

Estimate integrals recursively

Estimate integrals recursively

k bounces with n samples each $=\mathrm{n}^{\wedge} \mathrm{k}$ samples per pixel
e.g. 8000 spp if $\mathrm{n}=20$ and $\mathrm{k}=3$

Let there be blur!

Numerical integration

- aperture
- time
- materials
- penumbra

Distributed ray tracing [Cook et al 1984]

Whitted ray tracing - ray tree

Distributed ray tracing - ray tree

3 bounces : $10^{\wedge} 3=1000$ rays

Helps, but expensive!

Better way to solve the rendering equation?

path tracing [Veach98]

Random sampling at each level

Random sampling at each level

When to terminate?

When to terminate path?

Fixed depth d

When radiance is low

threshold
randomly
Russian roulette

https:/ /twitter.com/DisneyAnimation/status/1146085535057715200

More bounces? depends on scene

Path tracing each pixel - overview

Path tracing each pixel - overview

Path tracing: mapping samples to paths

2D

$$
\begin{aligned}
\text { pixel value }= & \text { average radiance } \\
& (\text { over sampled paths) }
\end{aligned}
$$

Path tracing: mapping samples to paths

2D

pixel value $=$ average radiance (over sampled paths)

Path tracing - maths

pixel average radiance

$$
f(\mathbf{X})=L_{e}\left(\mathbf{x}_{1}\right) T\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) G\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \cdot\left(\prod^{k-1} f_{x}\left(\mathbf{x}_{i}\right) T\left(\mathbf{x}_{i}, \mathbf{x}_{i+1}\right) G\left(\mathbf{x}_{i}, \mathbf{x}_{i+1}\right)\right) \cdot W\left(\mathbf{x}_{k}\right) .
$$

http://madebyevan.com/webgl-path-tracing/

This course so far ...

content \square
assessment

This course so far ...

content
assessment

This course so far

maths
physics
self-learning
programming

This course so far

assessment

This course so far ...

\square
assessment

self-learning

maths

programming

This course

- v 1.0 (2007, Columbia University, NY)
- Evolved
- current trends/needs (e.g. online resources, LLMs)
- mixture of fun + skills (awareness vs career in CG)
- assessment and learning are not independent!

Feedback/appraisal

- Piazza (anonymous)
- email me (personal)
- student feedback
- nominate for teaching awards
https://www.eusa.ed.ac.uk/whatson/awards/teachingawards

Quiz + feedback

1) Define radiance
2) Define irradiance
3) How would you obtain 1 from 2 and 2 from 1

Feedback on a scale of 1-10 (1-bad and 10-good)

1) Lectures are interesting
2) Lectures are difficult
3) I feel like I am learning, from this course
4) I am enjoying this course
5) Level of difficulty of tutorials
6) Recommendations for second half of the course (list one or two)
7) Describe (1-2 sentences) what changes you would recommend for material covered thus far, for the next offering of the course
