Automagic’s Raytracing Renderer
Computer Graphics: Rendering, October 2023
Coursework 2

Sean Memery, Kartic Subr

1 Overview

Great news, Automagic were very impressed by your previous work and have hired you as a creative
consultant! Their next task for you is to create the core renderer for their augmented reality software.
In this assignment you are expected to develop code for a full raytracing renderer along with more
advanced features if you can. But this is an Al company, why live in the past! You've decided to
make use of new technologies like ChatGPT and similar LLM resources to construct your raytracer.
Automagic want a full report on your work, including how you interact with the LLM resources, so
they can learn how to best make use of these modern tools.

Your full expected contribution is as follows: A basic raytracer that implements Blinn-Phong
rendering, a report outlining the steps taken to implement your raytracer including the LLM queries
and responses, and a video showcasing your renderer on a custom scene. On top of this, there are
some more advanced features that Automagic think would be a good inclusion, but aren’t required
to implement for a basic submission.

2 Specifications

Example renders of a provided JSON scene are shown in figure 1. These images showcase the expected
behaviour of your raytracer and include a render of a custom scene with the advanced submission
features.

2.1 Raytracer
Goal: Code a C++ raytracing renderer from scratch with the following features.

Features:

Image write (ppm format)

Camera implementation, with coordinate transformation
Intersection tests (sphere, triangles, cylinder)

Binary image writing (intersection/no intersection)
Blinn-Phong shading

Shadows

Textures (on sphere, triangle, cylinder)

Tone mapping (linear)

Reflection

Refraction

Bounding volume hierarchy as an acceleration structure

© 0N OE W=

— =
_ O

https://chat.openai.com/
https://techcommunity.microsoft.com/t5/educator-developer-blog/step-by-step-setting-up-github-student-and-github-copilot-as-an/ba-p/3736279

Constraints:

1. Make your program capable of loading a provided JSON scene file.

2. Output a ppm image of the scene.

3. Use at least one of the linked LLM resources (i.e. ChatGPT or Copilot).

4. Report your queries, responses and your modifications.

5. Recreate the rendered images of the example scenes (not pixel perfect).

6. The code should be clean and readable, with indicative variable and function naming, and

should contain ample comments describing function’s operations and variable roles.

2.2 Pathtracer
Goal: Improve your raytracer with a path tracer with the following features.
Features:

1. Antialiasing via multi-sampling pixels

2. Defocus in finite-aperture cameras by sampling the camera’s aperture

3. Render materials with BRDF’s (e.g. microfacet)

4. Soft shadows via sampling area lights

5. Multi-bounce path tracing

Constraints: Same as those for the raytracer.

2.3

Video

Goal: A video showcasing the abilities of your renderer, along with the input file used.
Constraints:

1.
. The camera should be in motion during the video.

The video should be a minimum of 10 seconds long.

The scene used for the video should be interesting i.e. it should include some features such as
textures, moving shapes, moving lights, etc.

This should be in the .mp4 file format.

Render quality should be reasonable (resolution, sample count, frame-rate, etc.)

(a) Render Mode: binary (b) Render Mode: phong (c) Render Mode: pathtracer

Figure 1: Example renders of scene.json utilising the basic Raytracer features and of a custom
scene utilising the Pathtracer. Additional scenes are provided for you to test your raytracer with.

3 Marking scheme

A total of 100 points are assigned for this project, which will then be halved, i.e. its final contribution
to your grade will be at most 50%, depending on the marks. See the course website for clarification.
The marking scheme is described below.

1. Basic raytracer features demonstrated i 35

(a) Camera (5)

(b) Intersection tests (5)

(c¢) Blinn-Phong shading (5)

(d) Shadows (5)

(e)
)

[oFage)

Tone mapping (5)
(f) Reflection (5)
(g) Refraction (5)

2. Intermediate raytracer features 20

(a) Textures (10)
(b) Acceleration hierarchy (10)

3. Pathtracer 20
(a) Pixel sampling (5)
(b) Lens sampling (5)
(¢c) BRDF sampling (5)
(d) Light sampling (5)

A REPOTt .o 15

(a) Formatted LLM queries (10)
(b) Explanation of code assembly for each features (total 5)

(a) Conception and screenplay (2)
(b) Modelling (4)
(¢) Rendering (4)

This coursework is meant to be an independent exercise and so create your own code, scene, and
video. Do not copy the examples provided, and do not collaborate with each other to actively
create your scenes. Indeed, we encourage you to discuss and brainstorm general concepts pertaining
to this coursework or about the use of relevant tools.

The marking for each feature includes marks for querying the LLM, adapting/integrating its
response in your code, debugging it and finally for demonstrating the feature. In addition, there are
marks for explaining this in the report.

If you execute the basic raytracer well, along with the report and video, you can expect a mark of
about 50-60%-+. The expected time for students who have attended lectures and tutorials to attain
this is about 24h. The intermediate features are expected to take about 10h and can allow you to
score a total of 70-80% on this coursework. Be warned that the advanced submission is not required
and could lead to you spending a large amount of time. We do not recommend that you attempt
the path tracer if you have already spent more than 35h on the raytracer. Even so, we strongly
recommend that you limit your time to at most 12h on the path tracer.

4 Deliverables

Submit a compressed .zip with your student ID as the name. e.g. "s123456.zip" via Learn. Any
deviations from the following format will incur a penalty of 5% of the marks for impacted sections.

4.1 Folder structure
The structure of the zip should be as follows:

5123456

+— FeatureList.txt

+— Code
+— Makefile

+— raytracer.cpp

+— raytracer.h

+— TestSuite

+— binary_scene.ppm
+— phong_scene.ppm
+— binary_primitives.ppm

+— mirror_image.ppm

+— simple_phong.ppm

+— Video

L video.mp4

»— Report
L 5123456.pdf

»— LLM-responses

L LLM-responses. json

FeatureList.txt:
List all the features in this spec, and for each, whether you have implemented it and whether you
have demonstrated it working fully.

Code:
The Code folder should simply contain all of the code used to create your program. This should
include a Makefile used to compile the source code, and the individual cpp and header files.

TestSuite:
Include images produced by your raytracer with each of files provided as part of the test suite pro-
vided. For scene.json, include both the images (binary and phong modes).

Video:

The Video folder should only contain your video file. The submitted video should be at least 10
seconds long and depict a moving camera traversing a custom scene. Part of your mark is the qual-
ity of the scene (i.e. the showcased features and creative aspects) while most of the marks for this

section is for the quality of the rendering of the video. The submitted video file should be a single
mp4 file made by combining many ppm images outputted by your program, see here for a possible
method of creating the mp4 file from ppm images.

Report:

The folder Report should contain only one file, which will use your student ID as your name. This
will be your report as a PDF. No other format will be accepted. Your report should explain the
steps taken to implement your ray tracer, with detailed descriptions of feature implementations, and
rendered images illustrating each of its abilities. The report should be in .pdf format (we recom-
mend writing with BTEX), and explain your work, step by step, with inline images. Figures should
be numbered, annotated, referenced and clearly visible. How you make use of the LLM responses in
this work is very important and should be included in the report, as they may need to be augmented
to fit into your program. Therefore, the report should include a section for each implemented feature
(notated by its number in the specification section, e.g. for shadows: Basic Raytracer 6 - Shadows)
and an explanation of how and why you made any changes to the original LLM output.
The LLM responses will be included in a separate file for your submission, a JSON document with
entries for each feature of your raytracer, outlined below.

LLM-responses:

The LLM-responses folder should contain a single file recording the responses of your chosen LLM
method. The LLM responses are very important for this work and are to be included in their own
JSON document containing a record of each implemented feature, containing five entries in each:

1. "feature": The feature that was implemented by this LLM response, formatted using the
numbers from the outline (e.g. for shadows this will be "Basic Raytracer:6"). It is very
important to match this formatting.

2. "method": The LLM method used to generate a response (i.e. "chatgpt" or "copilot").

3. "query": The exact text query used to generate a response (i.e. the input to ChatGPT or
Copilot chat, or the comment used for Copilot auto-fill).

4. "response": The exact response of the LLM, directly copied from the source with no changes
made.

5. "code": The location of the beginning and end of your final code for this feature, formatted like
this: "path/to/file.cpp:line_number_start-path/to/file.cpp:line_number_end" (e.g.
"code/raytracer.cpp:10-code/raytracer.cpp:25")

5 Tips

There are many moving pieces in a raytracer program and approaching it from scratch can be
challenging. The LLM resources will be extremely helpful during this, especially if you aren’t too
familiar with C++ programming, but hopefully you can make use of the following pieces of advice as
well:

e Similar to what was discussed in the Coding a raytracer tutorial, we recommend familiarising
yourself with the high level components that make up a raytracer and approach each one by
one.

e Making a high level plan of how your program will execute will help you piece together the
components.

e Be aware of optimisation, while not vital for this coursework it will help you while creating
your video to able to iterate and improve quickly.

https://stackoverflow.com/questions/68651839/how-to-convert-a-lump-set-of-ppm-files-to-a-single-mp4-video-using-ffmpeg

There are many resources online for correct implementations of raytracers, if you doubt the
output of the LLM resources, e.g. the Raytracing in One Weekend series.

It can be very easy to created a highly coupled program when coding a raytracer, many different
components need to communicate with eachother during rendering, so try to plan out your
program with this is mind.

The provided scene file is a great place to start when visualising what is needed in your
program, on top of what is described in this document, as you can see every detail of the scene
that your program needs to be able to handle.

You may find it particularly difficult to build upon your basic raytracer to implement the
advanced features, try to keep modularity in mind during development if you think you will
attempt the advanced submission.

If you have implemented many of the advanced features (but not the acceleration hierarchy
for example) you may find that your rendering time is extremely high, making the creation
of the video particularity difficult. We recommend making use of computing resources of the
university if possible, keeping your scene as simple as required, or keeping your rendering
resolution/sample count to a minimum level.

You may find it inconvenient to work with ppm images in Windows, their exist VSCode exten-
sions that are very helpful for this.

Your raytraced images of the scenes in the test suite should look like this:

binary primitives.png simple phong.png mirror _image.png

https://raytracing.github.io/
https://marketplace.visualstudio.com/items?itemName=ngtystr.ppm-pgm-viewer-for-vscode
https://marketplace.visualstudio.com/items?itemName=ngtystr.ppm-pgm-viewer-for-vscode

	Overview
	Specifications
	Raytracer
	Pathtracer
	Video

	Marking scheme
	Deliverables
	Folder structure

	Tips

